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ABSTRACT

+A mathematical simulation model of a coastal storm has been
programmed to forecast or hindcast wave and longshore current con-
ditions at a coastal site. Storm parameters for the model are
based on the size, shape intensity and path of the storm as de-
rived from weather maps. An elliptical form is used to model the
size and shape of the storm which are controlled by varying the
length and orientation of the major and minor axes. Storm in-
tensity is a function of the barometric pressure gradient which
is modeled by an inverted normal curve through the storm center.
The storm path is based on actual storm positions for the hind-
cast mode, and on projected positions assuming constant speed
and direction for the forecast mode. The location, shoreline
orientation and nearshore bottom slope provide input data for
each coastal site.

For each storm position, the geostrophic wind speed and di-
rection are computed at the shore site as a function of baro-
metric pressure gradient and latitude. The geostrophic wind is
converted into surface wind speed and direction by applying
corrections for frictional effects over land and sea. pThe sur-
face wind speed, fetch and duration are used to comput;;the wave
period, breaker height and breaker angle at the shore siite. The
longshore current velocity is computed as a function of wave
period, breaker height and angle and nearshore bottom slope.

The model was tested by comparing hindcast output with ob-
served data for several coastal locations. Forecasts were made
for actual storms and for hypothetical circular and elliptical
shaped storms.
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COASTAL STORM MODEL

INTRODUCTION

Coastal storms which provide a combination of high winds,
pounding waves and rapid longshore currents are a major cause of
distructive erosion along beaches and cliffs. Beaches which are
generally composed of sand or cobbles are subject to sudden changes
during storms. Ouring one storm at Chesil Bank near Abbotsbury,
England, the crest of a shingle beach was cut back 1.53 meters in
3 hours (Lewis, 1931). During a severe storm in July 1969 at
Stevensville, Michigan, the beach and bluff were eroded back over
5.5 meters when the waves reached a height of 2 meters (Fox and
Davis, 1970b). On the Oregon coast, a beach was stripped of a
2 meter thick blanket of sand and the wave cut terrace was exposed
when the waves reached heights of 8 meters during late Novemeber
storms (Fox and Davis, 1974).

For any operation involving the coastal zone, it is essential
to make predictions of wave and current conditions during a coastal
storm. General wave forecasts on a worldwide grid are available
from the National Weather Service and Fleet Numerical Weather Center.
These forecasts provide accurate predictions of wave conditions on
the open ocean, but do not provide detailed enough predictions for
the coastal zone. Therefore, a computer simulation model was de-
veloped to fill the gap between wave predictions on the open ocean
and surf predictions along the coast.

The coastal storm model utilizes an ellipse to simulate a map
of barometric pressure. The shape of the storm can be modified
by varying the length and orientation of the major and minor axes
of the ellipse. The intensity of the storm is controlled by in-
creasing or decreasing the range in barometric pressure. The actual
storm track and dimensions are read in as data for hindcasting wave
and current conditions. For making forecasts, the size, shape and
intensity of the storm are provided as input data for the model. In
forecasting, the storm path is plotted by assuming a constant azimuth
and velocity.

One of the initial steps in developing a coastal storm model is
determination of the barometric pressure gradient at any point on the
ground surface under the storm. The pressure gradient is then used
in conjunction with the latitude to calculate the geostrophic wind
speed, which in turn is used to compute the surface wind speed, wave
height and longshore current velocity. In the model, it is assumed
that a profile of barometric pressure along the major or minor axis
of the storm ellipse can be represented by an inverted normal curve.
By rotating the normal curve around the ellipse and taking the deriv-
ative, it is possible to calculate the pressure gradient at any point
on the ground. From that point on, conventional methods are employed
for determining the geostrophic wind speed, surface wind speed, wave
height and longshore current velocity.
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PREVIOUS WORK

The coastal storm model is based on a series of detailed field
studies which extended from 1969 through 1975. The studies inclu-
ded the analysis and synthesis time-series data on barometric pres-
sure,wind speed and direction, wave period and height and longshore
current velocity for 15 days to 1 year. Topographic profiles across
the beach and nearshore area were used to construct topographic maps
and maps of erosion and deposition. The sites in the study are
plotted by datein Figure 1 and included in the following list along
with references for each study.

1969 Stevensville, Michigan Fox and Davis, 1970a, 1970b
1970 Holland, Michigan Fox and Davis, 1971a
Davis and Fox, 1971
1971-2 Mustang Island, Texas Davis and Fox, 1972¢
Davis and Fox, 1975
1972 Sheboygan, Wisconsin Fox and Davis, 1972
1973 Cedar Island, Virginia Davis and Fox, 1974a
1973-4  South Beach, Oregon Fox and Davis, 1974
1974 Zion, I1linois Davis and Fox, 1974b
1974 South Haven, Michigan Davis and Fox, 1974b

1975 Plum Isiand, Massachusetts

The models have evolved from a geometric model called the
area-time prism (Davis and Fox, 1972a) through a conceptual model
(Davis and Fox,1972b) to a process-response model for Lake Michigan
(Fox and Davis, 1971b and 1973 ). The simulation model developed
for Lake Michigan was limited to the local geographic area where
the storms moved directly onshore to the north of the study area.
The proposed coastal storm model is an outgrowth of the earlier
model but is more generalized with broader application under a
wider range of storm conditions and shoreline orientations.

Several different types of computer models have been proposed
for the coastal environment. Probablistic models were developed to
reproduce gross coastal features such as a recurved spit on the
south coast of England (McCallagh and King, 1970) and the Mississippi
River Delta (McCammon, 1971). A markcv process was used to simu-
late the sequence of bar formation and migration across a beach




Figure 1.

Location map of field sites designated by project year.
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(Sonu and van Beek. 1971). A deterministic model resembling a
wave tank experiment was proposed to simulate the interaction
between a prograding delta and waves (Komar, 1973). A statis-
tical model with a relatively simple beach topography to compute
breaker height, longshore current velocity and wave setup (Collins,
1971) was followed by a more deterministic approach to model the
nearshore circulation patterns employing monochromatic waves and
more complex beach topographies (Noda, et al, 1974). An explicit
finite difference model for predicting time-dependent, wave in-
duced nearshore circulation was developed by Birkemeier and
Dalrymple (1976).

On a larger scale, Resio and Hayden (1973) proposed an inte-
grated storm model which combines three scales of atmospheric mo-
tion, large scale, synoptic scale and small scale into an estima-
tion of a winter wave-surge climate for the mid-Atlantic coast.
At a similar scale, Goldsmith, et al (1974) developed a wave cli-
mate model for the mid-Atlantic coa-t by using Dobson's (1967)
wave refraction program to project offshore waves into the coastal
zone.

The coastal storm model proposed in this report provides a
link between the large-scale, seasonal wave-climate models and
the dynamic surf zone models. By tracking a storm across a shore-
line, the wave parameters which are ocutput from the storm model
furnish input for the surf zone models. Therefore, the proposed
storm model could be combined with other computer models to pro-
vide an integrated process model for the coastal zone.




COMPUTER PROGRAMS - COASTAL STORM MODEL
Program STORM

Program STORM js a mathematical simulation model which has
been programmed for the computer to forecast or hindcast wave
conditions at a coastal site during a storm. The actual stomm
as represented by the isobars on a weather map is modeled by
an elliptical storm with major and minor axes at right angles
and passing through the center of the low. The size, shape,
intensity and path of the storm as determined from weather maps
are used to generate the surface wind pattern, wave height and
period, and longshore current velocity as the storm moves across
the coast.

The computer program is divided into a main program, STORM,
and a series of 11 subroutines. The main program is used to read
in the data, call the various subroutines for computing the wind,
wave and current conditions, print out the predictions at one hour
intervals. A1l the input and output is handled by the main pro-
gram while the calculations are carried out by the various sub-
routines. In this way, any portion of the model can be indepen-
dently tested by using a small main program to call each subrou-
tine individually. Therefore, if any problem arises in the main
program, it can be narrowed down to a particular subroutine, and
that subroutine can be tested under a variety of conditions with-
out using the main program. Also, if a portion of the simulation
model is to be incorporated into another program, any of the indi-
vidual subroutines can be removed and used separately with the
appropriate calling arguments.

The theory and mechanics of the program will be explained in
detail starting with the MAIN program and proceeding through each
of the subroutines as they are called by the MAIN program. The
program was written in FORTRAN IV for an 8k IBM 1130 at Williams
College. A full listing of the programs with appropriate comment
cards is included in Appendix A. A second version of the MAIN pro-
gram was written for the Xerox 530 which includes a graphics pack-
age for a 29 inch plotter. The graphics package is used to plot
barometric pressure, surface wind, onshore wind, alongshore wind,
breaker height, wave period and longshore current.




Main Program - Input and Output Options

The main program is used to read the input data for the storm
and shoreline conditions, call the various subroutines and print
out the results at one hour intervals. A listing of the input cards
is included in Appendix I with a description of each of the input
variables. The program is dimensioned to make predictions up to
130 hours or 5 days and 10 hours. If a longer prediction is desired,
it is necessary to increase the dimension of U(130) and V(130) to
the required number of hours. In the model, 130 hours was selected
because of core limitations on the 8k IBM 1130. For most of the
storms, the 130 hour limitation was not a serious constriction,
however, a larger dimension statement would be helpful in some cases.

The first two data cards are used to read in the title, starting
time, date and input/output options. The title used for the location
of the shore site can be up to 80 spaces long filling card 1. On
the second card, the starting hour, ISTRT, is included in columns 1
and 2 followed by the date, DAY, in columns 3 to 22. The starting
time is read in as an interger and must be right justified. If ISTRT
is read in as 0, the program will terminate. For the input option,
INAUT, in column 23, a 0 is used for metric units and a 1 is used
for nautical units including nautical miles, knots, and feet per sec-
ond. The output option, NAUT, in column 24 is separate from the in-
put option but uses the same code, O for metric units and 1 for nau-
tical units. Although metric units are becoming the standard and
are now required for scientific reports, it may be desirable at times
to have the input or output in nautical units. With separate input
and output options, it is possible to have the input in metric or
nautical units and convert to the other units with the output.

The first 3 columns of card 3 are used to select the major
options for the program. For the first option, INOPT, a 1 in column
1 will call the hindcasting mode, while a 2 in column 1 will call
the forecasting mode. The hindcasting mode is used when storm posi-
tions are available at six hour intervals. The hourly positions of
the storm are determined by a linear interpolation between the 6-hour
positions. For the forecasting mode, the initial position of the storm
along with a constant velocity and azimuth are used to calculate
successive positions at 1-hour intervals. The variables for the
hindcasting and forecasting modes are read in on card 6. The second
option on card 3 is the tide prediction option, IFTID. If a O is
punched in column 2, the tide prediction option is suppressed and
card 4 is not included in the data set. The tide option is omitted
for a non-tidal body of water, such as the Great Lakes. Where tide
data are available from the tide tables or from observations, a 1
is punched in column 2, and the tide data are included on card 4.

The longshore current equation for the simulation run is selected
in option 3, LSCOP. Four different longshore current equations are
included, (1) Fox and Davis (1972), (2) Longuet-Higgins (1970), (3)




Coastal Engineering Research Center (1973), and (4) Komar and
Inman (1970). The longshore current equations are called in
subroutines SURF and their differences will be discussed under
that subroutine.

The number of storm positions, NX, are punched in columns
4 to 6 of card 3, for 6-hour intervals in the hindcasting mode,
and for 1-hour intervals in the forecasting mode. For example,
if the hindcasting mode is used, and 3 days of data are included,
the initial position and 4 positions for each day would give a
total of 13 for NX. For the forecasting mode, a 3 day forecast
would use a 73 for NX, 1 for the initial position, and 72 for the
72 hour forecast. The maximum value for NX is 22 for the hind-
cast mode and 130 for the forecast mode.

The average basin fetch in kilometers, BNFCH, is punched in
columns 7 to 12 on card 3. The average basin fetch is used as
the limiting fetch in determining the wave height and period from
the wind speed. Where the basin fetch is smaller than the maximum
storm axis, the waves are fetch limited. However, where the fetch
is significantly larger than the storm size, the average basin fetch
will not be a Timiting factor in determining the wave parameters.
The basin fetch is considered in an offshore direction from the shore
site. In the case of a large ocean, the approximate width of the
ocean can be used as the basin fetch.

In columns 13 to 17 of card 3, the time interval between storm
positions TINT is normally set at 1.0. The time interval refers to
the printout spacing for the forecast modes. For the hindcast mode,
the values are read in at 6-hour intervals, and the results are
printed out at 1-hour intervals.

The minimum barometric pressure in millibars, PMIN, taken at
the center of the low pressure cell is punched in columns 18 to 24
on card 3. Usually, the minimum barometric pressure is interpolated
within the smallest isobar. Thus, if the smallest isobar is 1004,
and the isobar spacing is 4 millibars, the minimum pressure would
be estimated at 1002 millibars. The pressure at the largest en-
circling isobar, PMAXR, is used to determine the intensity of the
storm. If the storm is circular or oval shaped, the largest isobar
which encloses the storm center is used for PMAXR and punched in co-
Tumns 25 to 31 of card 3. If, however, the storm has a wave form
extending down from the north,a line is drawn along the storm path
through the storm center to the margins of the storm. The largest
isobar which the Tine crosses on both sides of the storm is then
considered the largest encircling isobar, PMAXR. In the program,
the largest encircling isobar is defined as 2 standard deviations
away from the center of the storm. Therefore, the total storm radius
would be 1.5 times the radius of the largest encircling isobar. The




pressure range would be 1.145 times the range within the largest
encircling isobar. The latitude at the shore site, SLAT, punched
in columns 32 to 36 is used in subroutine WIND to compute the
geostrophic wind speed.

The geographic size of the storm is defined in terms of an
ellipse with a major half-axis and minor half-axis corresponding
to radius of a circle. The major half-axis, AR, of the storm
ellipse measured when the storm is closest to the study site is
punched in columns 37 to 42. If the storm ellipse is assymetrical,
the longest half-axis on the side toward the shore location is used
as the major half-axis. The minor half-axis, BR, is measured at
right angles to the major half-axis through the center of the low.
The major and minor half-axes are measured from the center of the
low to the largest encircling isobar PMAXR. The minor half-axis,
BR, is punched in columns 43 to 48 on card 3.

The orientation of the major half axis EAZ is punched in col-
umns 49 to 54 of card 3. The orientation of the major axis is
measured in degrees from true north to the northern end of the
major axis ranging from -90° on the west to 90° on the east. for
a front or trough related to a low pressure system, the major axis
is usually several times longer than the minor axis and the orien-
tation of the major axis lies along the line of the front. In a
circular or oval storm, the major axis is usually 1 to 1.5 times
as long as the minor axis. The major and minor half axis are mea-
sured when the center of the storm is at its nearest position to
the shore study site.

Variables for hourly tide prediction are contained on card 4.
The spring tide range in meters, ST, {s punched in columns 0 to 5
and the neap tide range, TN, in columns 6 to 10. The spring and
neap tide ranges and the time of the last spring high tide are a-
vailable in the tide tables which are published annually by N.O.A.A.
In making the hourly predictions for the model, it is necessary to
punch the number of days since the last spring tide, TDAY, in col-

umns 11 to 15. The hour of the last spring high tide, THR, preceding

the start of the run is punched in columns 16 to 20. The tidal form
number, FN, punched in columns 12 to 25 is used to reproduce a semi-
diurnal, mixed-semidiurnal, mixed-diurnal or diurnal tide with the
right spacing and tidal beat. The nearshore bottom slope at low
tide, SLPLO, is punched in columns 26 to 32 and the slope at high
tide, SLPHI, is punched in columns 33 to 39. The nearshore bottom
slope which varies with tidal elevation is used for computing long-
shore current velocity in subroutine SURF. The preferred method of
determining bottom slope is to fit a linear surface to the nearshore
map at low tide, and repeat the process at high tide. The linear
slope should extend to a depth of at least twice the breaker height.
For the high tide range, the foreshore slope and low tide terrace
should be included in the slope calculation. Where it is not pos-

sible to fit a 1inear surface because of lack of data, it is possible
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to get an approximation of the nearshore slope by measuring the
depth at some predetermined distance from the shore at low tide
and at high tide. By dividing the depth by the distance, a good
approximation of nearhsore slope can be estimated for low and high
tides. The nearshore siope is an initial factor for the deter-
mination of the longshore current velocity, so care should be
taken in estimating nearshore slope at low and high tide. It also
should be pointed out that nearshore bars have a significant in-
fluence on nearshore currents and must be considered in making an
estimate of the nearshore slope. The final variable on the tide
prediction card is the mean tide level, TMEAN, which is the dif-
ference between mean sea level and mean low tide as reported in
the annual tide tables.

Data for the shore site location including geographic coor-
dinates, onshore direction, average bottom slope and offshore is-
land option are punched on card 5. The shore site location is
given in a X and Y coordinate system where the X-axis runs east-
west with positive X in the east direction, and the Y-axis north-
south with positive Y in the north direction. The X-Y coordinate
system is measured in kilometers with the origin located at the
southwest of the study site. In practice, a piece of 10 to the
inch rectangular grid graph paper is laid over the weather map
with the Y axis parallel to the longitude line nearest the study
site. The origin of the graph paper is placed several inches to
the southwest of the shore location so that the X-axis runs east-
west and the Y-axis runs north-south parallel to the latitude and
longitude 1ines through the study site. The X and Y coordinates
are read off the map in inches and converted to kilometers before
they are used in the program. The X coordinate, ULOC, is punched
in columns 1 to 7 and the Y coordinate, VLOC, is punched in col-
umns 8 to 14 on card 5.

The orientation of the shoreline given by the onshore
azimuth, SHAZ, and the average nearshore bottom slope, SLOPE, are
punched on columns 15 to 21 and 22 to 38 respectively. The onshore
direction measured in degrees in a clockwise direction from north
is used to give the orientation of the shoreline. Since the storm
is considered a regional feature, it is necessary to give the re-
gional orientation for the shoreline. An east-west shoreline with
land to the north would give a 0 azimuth. If a shoreline is running
north-south with the land to the east and water to the west, the
shoreline azimuth would be 90 degrees. Similarily, if the shoreline
is running north-south with the land on the west and the water on
the east, the onshore azimuth would be 270 degrees.

An option is available with the program for an offshore island
which is not influenced by a large continental land mass. When a 0
is punched in column 30 of card 5, the offshore island option is sup-
pressed and a normal continental coast or barrier island is assumed.

r
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For a coast backed by land, land corrections are used in computing
the surface wind speed when the wind blows offshore. Therefore,
when the island option is used and a 1 is punched in column 30 of
card 5, the wind is assumed to be blowing from the sea in all g
directions and the land correction is not used. For a barrier
island which lies roughly parallel to the coast, the island option
is not used because an offshore wind blows over land for a long
distance before it hits the lagoon and barrier island.

The storm positions for the hindcasting and forecasting modes
are punched on card 6. For option 1, the hindcasting mode, the X
and Y coordinates are punched in columns 1 to 7 and 8 to 14 respec-
tively. The X and Y coordinates are from the rectangular grid dis-
cussed for the shore site location on card 5. The coordinates for
the storm are given for the initial storm position and at successive
6 hour intervals, with one pair of coordinates per card. The num-
ber of pairs of coordinates is specified by NX, the number of storm
positions on card 3. For the forecasting mode, option 2, the storm
positions are determined at 1 hour intervals from the storm velocity,
storm azimuth and initial X and Y coordinates. The storm velocity,
SVEL, in columns 1 to 7, is given in kilometers per hour. Reason-
able storm velocities would vary from about 25 to 75 kilometers per
hour for a slow to fast moving storm. In the forecasting mode, it
is not possible to vary the storm velocity, so the initial storm
velocity must be maintained for the entire forecast run. The storm
azimuth or path is measured in degrees clockwise from north. As
with the storm velocity, it is not possible to vary the storm azi-
muth in the middle of a forecast run. An azimuth of 0 degrees would
have the storm moving due north, and a 90 degree azimuth would have I
the storm heading east. In the forecast mode, the initial X and Y
coordinates for the storm are punched in columns 15 to 21 and 22 to
28 respectively. It is possible to make a map for each predicted
variable by making a series of runs with different initial coordin-
ates.

H
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It is possible to run a series of models for different coastal
situations by including a new data set for each model starting with
the title card. To terminate the run, two blank cards are included
at the back of the data deck. Since the second card of the new data
set is blank, ISTRT is read in as 0 and the program will finish.

Different versions of the main program are used for making fore-
casts directly from the console, and fur printing a map using the
forecast mode. Listing of the programs are included in Appendix A
along with explanations of the input options.

b=t g
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Subroutine LOCAT

As a storm moves across a coastline, subroutine LOCAT is
used to determine the position of the coastal site relative to
the storm center for each increment of time. In preparing the
input data for the program, the location of the coastal site and
a sequence of storm positions are plotted on a rectangular grid
referred to as the map coordinate system. For the map coordinate
system, the X axis points east, the Y points heading north and
the origin is located to the southwest of the initial storm po-
sition. When the shore location and storm positions are plotted
on a weather map, the coordinates are measured in kilometers or
nautical miles, whichever are the most convenient units for the
project.

In computing the geostrophic wind speed, it is necessary to
determine the gradient in barometric pressure at the coastal site.
Therefore, a storm coordinate system is established with the ori-
gin at the center of the storm, the X] axis parallel to the shore,
the Y1 axis perpendicular to the shore, and the positive Y1 di-
rection heading onshore. When facing the land from the sea, the
positive X1 direction is along the shore to the right, and the
negative X1 direction is to the left (Figure 2). Each time the
storm moves, the origin of the storm coordinate system is also
moved to the new location for the center of the storm. However,
the orientation of the X1 and Y1 axes remains the same with the
X1 axis parallel to the shore and the Y] axis at right angles to
the coast.

In the storm model, the units for the X1, Y1 coordinate sys-
tem are converted from kilometers or nautical miles to storm radii
by dividing by the radius of the storm. 1In an elliptical storm, the
length of the major half axis is used in place of the storm radius.

In subroutine LOCAT, ULOC and VLOC are the map coordinates for
the coastal site, and UST and VST are the map coordinates for the
storm center (Figure 2). Vectors are computed parallel to the X
axis (U = UST-ULOC) and parallel to the Y axis (V = VLOC-VST). The
resultant vector (Z¢= U2 + V*) gives the map distance from the storm
center to the coastal site. The counterclockwise angle (ANG) be-
tween the positive X axis and the Z vector is computed by the arc-
tangent subroutine ARCTA. The onshore azimuth (SHAZ) is the onshore
direction normal to the shoreiine measured in a clockwise direction
from north. The angle A (A = ANG - SHAZ) is used for converting
coordinates from the map system to the storm system. The shore
position is then determined in the storm coordinate system for dis-
tances along the X1 axis (X1 = -Z * cos (A)) and along the Y1 axis
(Y1 = 2 * sin (A)).

A third coordinate system is set up for dealing with an ellip-

tical storm. In the elliptical coordinate system, the P axis lies
along the major half-axis and the ) axis lies along the minor half-

N




axis. The distances, P and Q, within the storm ellipse are used
to locate the shore site relative to the center of the ellipse.
The orientation of the storm ellipse is given by the ellipse azi-
muth (EAZ) which is the azimuth of the major half-axis plus or
minus 90 degrees from true north.

12
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Figure 2. A. Map coordinate system (X-Y) for locating storm
center and shore site, and B. Storm coordiante system
(X1-Y1) with origin at storm center and X axis parallel
to the shore.
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Subroutine ELIPS

The wind angle and barometric pressure gradient at any
position within an elliptical storm are determined by subrou-
tine ELIPS. A is the length of the major half axis, B is the
length of the minor half axis and EAZ is the angle from true
north to the path of the major half axis. The shore site is
located at point X1, Y1 within the storm ellipse. To determine
the pressure gradient, a second ellipse is plotted with axes
Al and Bl which passes through point X1, Y1. The second el-
lipse has the same axial ratio B/A and the same origin as the

storm ellipse (Figure 3). The tangent to an ellipse is defined
by equation 1.

X, X Y, Y
+ =1
a? b2 (1)

therefore, the intersection of the tangent to the ellipse with
the X axis can be found by equation 2.

a2 az v,y
Xe— - 1 (2)
X, b2 X,

Equation 3 is used to generate the line normal to the tangent

X=Xg+— Y. (3)
52Y1

The intersection of the line normal to the tangent and the A axis
is found by equation 4.

b2 X,
Xo = X - ——— ¥ (4)
a’ Yl

which is terms of the point X1, Y1 would be

b’
XU = X] - Yl (5)
a

The distance X, is measured from the center of the ellipse to the
point where the 1ine normal to the tangent through X1, Y1 intersects
the A axis. The point X2, Y2 is the intersection of the line normal
to the tangent at X1,Y1 and the path of the ellipse.

To determine the gradient of the barometric pressure, it is
assumed that the pressure gradient follows a normal curve along

14
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Figure 3.

Location of the shore site (X1,Y1) within a storm ellipse
(AB) and on a minor ellipse (A1,B1).

15

A
Ay X2Ys
Xo
B |By B, |B
A
A’

PR

O SR S S R

DS S




the major axis of the ellipse. P1 is the barometric pressure
at point X, along the A axis. The pressure at X, is used in
determining the pressure gradient normal to the isobar at point
X1,Yl. The final pressure gradient calculation is made in sub-
routine WIND. XA and YA are used to plot the tangent to the
ellipse at X1,Y1 for determining the wind direction. The wind
direction is assumed to be parallel to the tangent to the el-
lipse at X1,Y1 and in a counterclockwise direction around the
center of the ellipse.
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Subroutine WIND

The geostrophic wind speed and direction for each storm
position are computed in subroutine WIND. The equation for geo-
strophic wind speed V_ is based on latitude and barometric pres-
sure gradient. 9

.S arp
Vg “2asin¢ aN (6)

where S is the specific volume, (779 cm3/gm), & is the angular
velocity, (7.29 x 107> rad./sec.), ¢ is the latitude in degrees,

and AP/AN is the barometric pressure gradient normal to the iso-

bar at the shore location (Godske et al, 1957, p. 370). The baro-
metric pressure gradient is computed at right angles to the tan-
gent of the ellipse through the shore site, (point X1, Y1). To
compute the gradient, a normal curve is constructed perpendicular

to the tangent through point X1, Y1. The derivative of the normal
curve is taken at point X1, Y1 to compute the barometric pressure
gradient. The geostrophic wind direction is assumed to be parallel
to the tangent of the ellipse at point X1, Y1 and heading in a coun-
ter-clockwise direction around the center of the ellipse. It is
assumed that the small ellipses within the storm ellipse are par-
allel to isobars. Therefore, wind direction can be determined if
the geostrophic wind is directed along the isobars with the high
pressure to the right and low pressure to the left of the motion

in the northern hemisphere. By means of geostrophic wind equations,
the wind direction can be estimated with error of less than 10°,

and speed with an error of less than 20% (Cole, 1970, p. 185).

An approxiamte relationship exists between the speed and direction

of the surface wind measured at anemometer level and the upper quasi-
geostrophic wind. Owing to differences in surface roughness, this
relationship varies from one station to another, and also varies at

a single station with stability. Thus it is rather difficult to de-
termine the surface wind accurately from the upper quasi-geostrophic
wind. Under average conditions, a rough method may be applied which
makes use of the horizontal friction force, SR, near the ground
(Figure 4). The equation for horizontal motion can be used for com-
puting the friction force at a given station (Godske, 1957, p. 453).

sR = Oh + sth+ Zuz k x Vi (7)
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The horizontal component of the wind speed, i and the barometric
pressure gradient, SY,Ps can be measured directly and inserted in-
to the equation. Although it would be possible to determine Vs the

vertical variation in wind speed, it would involve measurements in
time and space which would be vary laborious and not to reliable.
In practice, i includes both a convective term and a local term.

However, the influence of i is small when mean values over rela-

tively large areas are included (Hasselberg and Sverdrup, 1915).
Computations of the average of R based on time-series averages of

a series of synoptic series of maps was carried out over land (Baur
and Phillips, 1938) and over sea {Westwater, 1943). Based on their
computations, the frictional force SR is directed backward to the
right of the wind Vi and is proportional to the wind velocity,

Vi
SR = bvh (8)

and forms an angle g8 with -Vp as shown in Figure 4. To make cor-

rections for wind speed and direction over land and sea, the mean
values of b and ¢ are: b = 1.9 x 10 %sec !, ¢ = 29° over land and
b = 0.65 x 10 4sec” !, 8 = 50° over sea (Baur and Phillips, 1938).

Using b and g, a simple diagram has been constructed to show
the configuration of forces when Vi, = 0. The balance of forces in
the diagram along Vh and normal to it gives the following equalities

with the angle between the geostrophic wind and the surface wind
denoted by «a.

s | vp | sina = sR cos 8 = bv, cos &

s | vp | cos a = sR sin ¢ + 20, vy,

= by, sin 8 + 20,V (9) i
therefore, by division
- 2 G sin ¢
cot u = tang + oo (10)
where : is the latitude. Therefore, the angle u between geostrophic i
wind and the surface wind can be determined directly from the latitude
+ when b and 2 are known for a given station. |

The ratio between the surface wind Vh and the geostrophic wind
vg can be derived from equations 9 and 10 and are given below according
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Orientation of the frictional force near the surface of

Figure 4.
the earth (Godske, et al, 1957, p. 453).
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to Godske et al, 1957.

Vi = Y _s | vp | sina 2 sin ¢

v s [vp ] bcosgsg s | vp|
g 2 sin ¢

therefore,

Vy = 29asin ¢ sin a

Vg b cos g (11)

Once the angle o between the surface wind and geostrophic wind
has been computed, it can be inserted into equation 11 to compute
the ratio between the surface wind and the geostrophic wind over
land or sea. Table 1 gives values at different latitudes for «,
the angle between surface wind and geostrophic wind, and vh/vg,

which are plotted in Figure 5. In subroutine WIND, the correction
factors for computing surface wind speed and direction are com-
puted following statement 50.

Since the values for b and 3 are given for wind blowing over
land or over sea, intermediate values must be computed for winds
blowing along the shore. Winds blowing directly onshore with a
wind angle of zero would have values of b = .000065 and g = 50.
In this case, the wind is blowing from the sea and the land does
not have any frictional effect on the wind. In like manner, if
the wind is blowing over the land in an offshore direction, values
for the land, b =.000190 and ¢ = 20 are applied. For the transi-
tion zones, a cosine transformation is used to compute the inter-
mediate values. Within the transition zone, angle A is computed
from O to 90° with 0 being land and 90° being sea. The new angle
A is used in equations 12 and 13 to compute the transition values
for b and beta.

b =.0001 - (1.275 + .625 (sin A)) (12)

8 39.5 - 10.5 - sin A (13)

The computed values for b and g are substituted in equations 10 and .
11 to compute the surface wind speed and direction from the geo- 1

strophic wind.

The final step in subroutine WIND is to compute the effective

wind speed which is carried over into subroutines FETCH and WAVES

for determining effective fetch length and wave height. The effec-
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tive wind speed is that which will generate waves which will in turn
have an effect on the beach. If the wind is blowing directly on-
shore, the full force of the wind is used in generating waves which
4 will hit the coast. However, if the wind is blowing directly off-

T T T

shore, small waves will be generated in the nearshore area (Resio
and Hayden, 1973). Based on empirical observations, onshore winds
are about three times as effective in generating local waves as
offshore wind (Davis and Fox, 1974 and Owens, 1975). Tnherefore,
a cosine transformation is used in subroutine WIND to compute ef-
fective wind speed from the surface wind speed and direction.
When the wind is blowing directly onshore, the effective wind is
equal to the surface wind. On the other hand, when the wind is
blowing along the shore, the effective wind is equal to 2/3 of
the surface wind, and when the surface wind is blowing directly
offshore, the effective wind is 1/3 the surface wind. Although
the values for effective wind may be rough in some cases, they
seem to give good estimates where comparative wind and wave data
are available.
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Lat1t:de . . _Zﬂ_ _Zﬁ
g L Vg s
0 61 40 -—-- -—--
10 55 29 ---- -—--
20 49.5 23 ---- -
30 45 19 0.3] 0.56
40 42 16 0.38 0.63
50 39 14.5 0.42 0.67
60 37 13 0.46 0.70
70 36 12.5 0.485 0.715
80 35 12 0.495 0.723
90 35 12 ---- ———-
Table 1. The angle between surface wind and geostrophic

over land oy and over sea o and the ratio

between surface wind speed and geostrophic
wind speed over land and sea for different
latitudes ¢, according to -Baur and Phillip
(1938, p. 292).
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Subroutine DECAY

Subroutine DECAY is used to determine the height of a given
wave after it has decayed for a specified length of time. Snod-
grass, et al (1966) presented empirical data on the attenuation
of selected frequencies which they observed in their study of
propagation of ocean swell in the Pacific. In general, they
found the attenuation to be large within the 1imits of the wind
area of the storm, and small outside the storm area. The em-
pirical attenuation data were logarithmic coefficients reported
in units of decibels per latitude degree of propagation distance.
For the range of frequencies 0.06 to 0.08 Hertz, these data fit
an attenuation function of the form

where a is the modulus of amplitude decay in degree'] = 0.1181 ¢,
where 3 is the logarithmic attenuation coefficient in decibels/
degree, and where x is the propagation distance in degrees.

The logarithmic attenuation coefficient versus frequency was
plotted on a graph (Kaufman, 1973), and equation (15) was de-
rived from the line on the graph.

F—0.0G) -1

5 = 10(0'5324 (15)

where F is the frequency of the wave being decayed.

The propagation distance x is found by multiplying the wave
velocity 1.5606*T (where T is the wave period) times the time
interval TINT. This distance is then reduced to degrees by
multiplying it by the constant value

360°/circle
40074km/circle

(using the circumference of the earth at the equator). To find
the decayed wave height then, the original wave height is multi-
plied by the attenuation function. This decay factor was tested
with several different wave heights, periods, and time intervals,
giving very reasonable decay results, but there were no empirical
data against which to check the results.
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Subroutine ETIME

Subroutine ETIME is used to determine the amount of time
(referred to as effective duration) which would be required to
produce waves of a certain height by wind blowing at a given wind
speed. A wave forecasting procedure developed by Sverdrup and
Munk (1947), and revised by Bretschneider (1952, 1958) with ad-
ditional empirical data is called the sverdrup-Munk-Bretschenider
(SMB) method (C.E.R.C., 1973). The SMB curves for forecastin
wave height are based on equation 16 from Bretschneider (]958?.

- 0.283 Tanh [0.0125 (3" ] (16)

where g is the acceleration due to gravity, H is the wave height,
F is the effective fetch length, and U is the wind speed. Solving
equation 16 for F gives

S ek

. [ARCTANH ( o—zﬁg%‘u"‘)]
X
(17)

P9 §.0125

Therefore, F is the effective fetch that it would take to generate
waves of height H with a wind speed of U.

In terms of storm duration, the effective fetch equation is

S 072, 1.25

0.3
10 10 X

F = ] (18)

Where F is effective fetch, W is wind speed, and D is storm duration.

Solving this for D, we have:

; 0.8
D = 7 0.3
( 2. 0.7 xw') (19)

10

Therefore, D is the effective duration that it would take to build
waves of a certain height (used to find the effective fetch) with
winds of a given speed. Then, this effective duration is

added to the current time increment of the storm to give a duration
which takes into account the wave built in previous time increments.

Subroutine ETIME was tested by running the data from subroutine
WAVES back through it to arrive at the original data. Ffor example,

25




the following wave heights and wind speeds were tested using
the C.E.R.C. charts and the subroutine (Table 2).

Effective Duration

Wave Height Wind Speed From SMB Curves Derived
14 ft 80 kts 1.1 hrs 1.05 hrs
1 ft 12 kts 1.4 hrs 1.38 hrs
45 ft 80 kts 9.9 hrs 10.23 hrs
3 ft 12 kts 21.0 hrs 21.40 hrs
14 ft 30 kts 21.0 hrs 21.76 hrs

Table 2. Test for subroutine ETIME comparing effective
duration available from SMB curves with derived
duration for selected wave heights and wind
speeds.
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Subroutine FETCH

Subroutine FETCH is used to determine the maximum wind gen-
erating area and the average wind speed within that area for a
circular storm on the open ocean. Three cases are considered for
determining the actual storm fetch as the storm passes across a
shoreline.

For a storm on the open ocean, the wind speed varies with
the slope (first derivative) of a normal curve as one crosses
the storm. The area of the storm with wind speed greater than
one half of the maximum lies within a ring with an outside radius
of 1.92 standard deviations and an inner radius of 0.32 standard
deviations. This ring between 1.90 and 0.30 was divided into 13
smaller rings. The area of each ring was found and multiplied
by the wind speed at the midpoint of the ring. These products were
summed and then divided by the total area to give an average wind
speed of 0.8847 of the maximum wind speed. The total area was
found to be 7.7598 square standard deviations. Since the wind is
being generated in a circular pattern, approximately one quarter
of the wind is blowing along each axis of a grid with its center
at the origin. Since the storm fetch area has a shape resembling
an ellipse, the fetch for winds blowing in any one direction can
be considered an ellipse with an area equal to one quarter of the
maximum wind generating area (1.9400 square standard deviations)
and centered on the maximum wind speed circle (1 standard devi-
ations). The short half diameter was taken tc be 0.7 standard
deviations (1.0-0.3).

Area = mxaxb
1.9400 = 3.1415 x a x .7
a = 0.8822 standard deviations (20)

Therefore, the maximum storm fetch length is twice that, or 1.7644
standard deviations. Converting to storm radii, the fetch is 0.5881
radii.

Where the storm crosses the shoreline three cases must be con-
sidered; Case 1, where 1/3 R ~ x > 0; Case 2, where 0.4444 R > x > 1/3
R and Case 3, where x > 0.4444 R, where R is the storm radius and x
is the distance from the center of the storm.

For Case 1, (1/3 R > x > 0) (Figure 6), it is assumed that the
fetch area, centered on the 1/3 R circle, swings around so that the
long axis of the ellipse is always pointing at the beach. We have
maximum storm fetch in this case until Y is small enough that the
fetch begins to cross the beach as it continues to swing. This
point is Y1. From the Case One diagram, 0? = X? + Y1 and D‘=
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(173 R)2 + (1/2 F)? so we have X + Y12 = (1/3 R) + (1/2 F)? or

Y1 = J,k]/3 R)” + (1/2 F)2 - X? (21}

As the storm continues to cross the beach and rotate, the fetch
decreases. When the 1/3 R circle of the storm crosses the beach,
the storm has swung so that the beach is in the center of the fetch
area. Therefore, the storm fetch is one half of maximum at this
point (Y2). As the storm continues inland, the fetch length reaches
a minimum as Y goes to zero (Y3). This minimum is determined by

the equation 22.

I

FMIN = 7§F=f?ﬁ§?- FMAX. (22)
This gives a diminishing minimum as |x' goes to zero. The fetch
then increases to a high equal to 1/2-FMAX as the 1/3 R circle a-
gain crosses the beach (Y4). The fetch then declines again, fin-
ally dropping to zero at Y4, at which point the storm is completely
onshore. This gives the "eye of the storm" effect where the winds
drop to a minimum when the storm is at its closet point of approach
and then increase again as the storm moves on, and finally drop as
the storm moves away. Cosine smoothing is used to smooth out the
increases and decreases in fetch.

For Case 2 (0.4444 R - x > 1/3 R)(Figure 7), again we have tull
fetch until the fetch area comes into contact with the beach at Y.
The fetch then decreases as the storm moves onshore, hitting zero
at Y2. The reason that the fetch doesn't drop and then rise again,
as in Case One, is that the eye of the storm (the part inside the

1/3 R circle) never passes over the beach.

This case ends at X = 0.4444 R because D in the case two dia-
gram = v(1/2 R}"+ (1/2 F)< = 0.4444 R. When X - D, then the geo-
metric relationships that allow us to find Y1 no longer hold, since
0, the distance from the origin to the beach, car no longer equal
both /X7 + Y17 and JV{1/3 R)” + (1/2 F)-. Again consine curves
are used to smooth out the changes in storm fetch.

For Case 3, ( x - 0.4444 R)(Figure 8) the storm fetch area never
actually crosses the beach, but the fetch decreases as the storm pas-
ses over the shore farther along the coast. Thus the storm fetch is
at its maximum until the fetch area starts going onshore at Y1. Here
the fetch is perpendicular to the storm path. Y1 is at zero since
at that point, the whole half of the storm that is generating along-
shore waves is still over the water, so we still have full fetch.

As the entire storm passes onshore (Y2), the fetch drops to zero.
Y2 is  -R7 - (U.IIEI R)” . Y2 is frozen, using an X value of 0.4444R.

28




8

s Y Y< Y

3R>x2g

ViR () x ®
MRV CLIAE o
Yy: 0.0
T
vo B -x"

R

C fFigure 6. Case 1 - storm fetch when the distance from center of storm
‘ X is less than 1/3 storm radius, R.

29




L__\\\
\\\
.
R
a.-fW‘*l |
J‘R “‘
e Y J
X ;R G b [ :
. / /
\
/{
Iy ]
\\ s
N ///
(
|
O 4444R =X =3R "
! : 3 o
Y, = (if) ‘é’—p)t, X1
Ye S/ R ->
4
Figure 7. Case 2 - storm fetch when the distance from center of storm
X is less than 0.4444 and qreater than 1/3 storm radius, R.

30




13

{]

F

Ye Y ; |

O.u444R ;

M ‘.
\ﬁ—/

X Z0 44949 R

i

V.= 0 O

T, = ~=/R? - (0 944y o)

Figure 8. Case 3 - storm fetch when the distance from center of storm
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The reason that this is valid, is that from X = 0.4444 R on out,
the fetch area never actually passes over the beach, so that all
these cases are essentially the same, as far as the size of their
storm fetches goes. Only the distance from the storm fetch to
the beach changes.

i Subroutine FETCH was tested in two ways. First X and Y were
varied independently, running Y from +R to -R for each value of X.
This simulated storms with paths perpendicular to the shoreline.
Second, X and Y were varied simultaneously by a constant amount,
simulating storms crossing the shoreline at an angle. In both
cases, the program produced continuous curves of fetch varying with
storm location, with smooth transitions between all cases.
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Subroutine WAVES

The equations for predicting significant wave height and
period in subroutine WAVES are based on the Sverdrup-Munk-
Bretschneider (SMB) method revised by Bretschneider (1958)
and plotted as a series of curves by C.E.R.C. (1973). The SMB
wave forecasting curves for fetches of 1 to 1000 miles are given
in Figure 9. The wave prediction curves use the wind speed in
knots, storm duration in hours, and storm fetch to calculate the
significant wave height and significant wave period.

In order to use the SMB method in the model, the first task
was to find equations to approximate the effective fetch from the
wave prediction curves. The effective fetch is the limiting fetch
which corresponds to a given wind speed and duration. The effect-
ive fetch is determined by moving to the left across the chart at
the level of the wind speed until you hit the appropriated storm
duration line. Then drop straight down to the fetch length axis
from the intersection of the wind speed line with the duration
line. This value on the fetch length axis is the effective fetch,
if it is less than the actual fetch.

To develop an equation for effective fetch, the first problem
is to determine the intercept of the proper duration line. To do
this, the intercept of each line with the fetch length axis was
plotted against the storm duration. Log scales were used on both
axes since the original fetch length axis had a log scale and the
duration lines themselves were spaced logarithmically. These
formed a nearly linear trend and the equation for the line was
found, in terms of the log axes, to be:

where [ is the intercept and D is the storm duration.

The next step was to determine the slope of the storm duration
lines given in the following eguation.

7
F =(—TS-O—)O ‘ x 1 (24)

where F is the effective fetch, S is the wind speed, and I is the
intercept of the duration line with the fetch length line. Com-
bining equations 23 and 24 we get equation 25 for the effective
fetch in terms of wind speed and storm duration:

0.72
F=(3p) x (1093 x 0129 (25)
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If this value is less than the actual storm fetch then it decreases
the relevant fetch length which is used in the rest of the equations.

The SMB forecasting curves were constructed from equations 26
and 27, which were empirically derived by Bretschneider (1958).

8 - 0.283 amn ( 0.0125(8)" ") (26)

A= 2o (oo ($E)TT) @

where g is the gravitational constant, p is PI (3.1459), H is

the significant wave height, U is the wind speed, F is the effective
fetch, and T is the significant wave period. Solving these equations
for H and T, we get equations 28 and 29.

H = UZ x 0.283 x TANH(O.]ZS(gg)o.w) (

g

28)

T = 2pU x 1.20 x TANH( 0.077(%;)0'25) (29)
g

The values for wind speed, storm duration, and effective fetch are
then inserted into equations 28 and 29 to yield the wave height and
period. For example in the case of a storm with a duration of 10
hours, a wind speed of 35 knots, and an actual fetch of 200 nautical
miles, this gives us an effective fetch of 87.44 nautical miles, a
wave height of 12.78 feet, and a wave period of 7.85 seconds. But
suppose that we have a storm the same as the last one, but with a
fetch of only 80 nautical miles. In this case the actual fetch is
smaller than the computed fetch, so it remains as the effective

fetch. This gives us a wave height of 12.36 feet and a wave period
of 7.72 seconds.

The program has an option so that the results can either be
metric or, to facilitate checking the results against the SMB curves,
the results can be in nautical miles and feet. The subprogram was
tested with numerous combinations of wind speeds, durations, and

fetch tengths, with the results agreeing very well with the SMB
forecasting curves.
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Subroutine TIDE

Subroutine TIDE is used to determine the tide level at each
hour, the spring tide range (ST), the neap tide range (NT), the
number of days since the last spring high tide (TDAY), the hour
of the last high spring tide (THR), and the tidal form number
(FN). Four principal tidal components, M2 - Principal lunar,

Sy - Principal solar, K] - Lunar-solar diurnal, and 0] - Prin-

cipal lunar diurnal are used for making a prediction of the hourly
tide level. The periods of the semi-diurnal components (TM2 =
12.42 hours and TS2 = 12.00 hours) and the diurnal components

(TK1 = 23.93 hours and TO1 = 25.82 hours) are constants in the
subroutine. The tidal form number FN is used to classify the
tidis of a locality according to equation 30 (Defant, 1960, p.
306).

Ky + 04

M

PN = 1
2%t S (30)

The following classification based on Dietrich (1944, p. 69) is
used to classify tides according to their form number.

FN = 0 - 0.25 Semi-diurnal tide

FN = 0.25 - 1.50 Mixed- mainly semi-diurnal tide
FN = 1.50 - 3.00 Mixed- mainly diurnal tide

FN = greater than 3.0 Diurnal tide

As examples of the different types of tides, Immingham, England
has a semi-diurnal tide with a form number of 0.11. San Francisco,
California has a mixed, dominately semi-diurnal tide with a form
number of 0.90. Manila has a mixed, dominately diurnal tide with a
form number of 2.15, and Do San,Viet Nam on the Gulf of Tonkin has
a pronounced diurnal tide with a form number of 19.2. The four ma-
jor components are responsible for the general form of the tides
and generallyaccount for about 70 percent of the total variance.

If the next three most important tidal components, N2, Ky and Py

are included, the percentage of the total variance increases to
about 83% (Defant, 1960).

If some simplifying assumptions are made concerning the major
tidal components, it is possible to make a good approximation of
the hourly tide level from the maximum spring tide range, minimum
neap tide range, and the tidal form number. First, it is necessary
to assume that the diurnal components, K] and O] are approximately

equal. Second, assume that the maximum spring tide range is equa}l
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to the sum of the four major components according to equation 31.

ST=M,+5, -(Kk +0,) (31)

Next it is assumed that the neap tide range is approximately equal
to the lunar components minus the solar components.

If K] and O] are approximately equal, it follows that

The form number is the diurnal components over the semidiurnal
components in equation 30, however, if K] = 01, then

2 K,

FN = m (34)

By combining the equations for the.form number (Equation 30),
the spring tide range,and the neap tide range,it is possible to
solve for M] and 52‘

y o ST+ TN (35)
1T T+ N
and
_ ST - N
S2 = T{TFN (36)

If it is now assumed the lunar components are proportional,
an approximation of the K.| component can be derived from the M2

component

Ky =FN - M (37)

1 2
and the solar components are related in like manner, therefore,

0 = FN - S, (38)

The amplitude of the maximum spring tide was taken at the last

previous spring tide for each run, therefore, the phases for the four

major components are considered O at that time. By computing the
time differences from the last spring high tide to the hour for the
prediction, the contribution for each tidal componcnt can be calcu-

lated. The argument (ARG) is equal to 2 pi times the number of hours
since the last spring tide. The tide is computed by adding together

the contribution for each of the tidal components.
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TIDE = M2 cos(TM )+ S2 COS(TSZ)+

2

ARG ARG
K] . cos(fi;) + 01 . cos(Tﬁ;) (39)

Although some rough approximations were made in deriving the
major tidal components from the spring tide range, neap tide range
and form number, the resulting tide predictions work out quite
closely with the tide tables. The tide tables give the time of
high and Tow tides for each day, and the predicted times of high
and low tides fall within 1 hour using subroutine TIDE. The sub-
routine was tested for Plum Island, Massachusetts, Cedar Island,
Virginia, Sapelo Island, Georgia and Mustang Island, Texas, and
gave satisfactory predictions for each of the areas.

One of the major reasons for making tidal predictions in the
model is to determine the effect that tides have on the nearshore
bottom slope. The slope at low tide SLBOT, the slope at high tide
SLTOP and the tide level are used to determine the intermediate
slope between high and low tide.

SLOPE = SLBOT + TLOC *(SLOTP - SLBOT)  (40)
The final tide level which is included with the output is

computed by adding the relative tide level TIDX to the mean low
tide level TMEAN.
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Subroutine SURF g

Breaker height, angle and longshore current velocity are
computed in Subroutine SURF. The critical value, Hb/hb = .78 .

where H, and hb are breaker height and depth, are used for a
breaking criterion (Munk, 1949). Applying any wave theory and

assuming conservation of energy flux, Komar and Gaughan (1972) ﬂ

derived the relationship @

;:

)

Hy = 0.73 cm + .383 /% (T #9)%/° (41) ’

]

t where Hb is the breaker height, g is gravity, T is wave period %

and H_ is the deep water wave height. ;

]

The breaker angle oy is computed by first finding the shallow ‘L

water wave length and then taking the ratio of shallow water to p
deep water wave length using Snell's law to determine the breaker

angle. |

e

;.

sin oy = sin ug TANH[ 2" (42)

L

..l

where %y is the deep water wave angle which is assumed to be the

same as the wind angle, Hy, is the breaker height and Ly, is the ?
breaker depth.

The refracted breaker height, HR’ is obtained from the re-
fraction coefficient, KR,

c0S Qb (43)

which is multiplied times the breaker height, Hb

bty > i

Hp = KR ® H (44)

Four different options are available for computing the long-
shore current velocity. The longshore current equations by Longuet- |
Higgins (1970), Komar and Inman %1970). Fox and Davis (1972) and H
Coastal Engineering Research Center (C.E.R.C., 1973) used basic !
different assumptions with the same set of variables. The variation
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in longshore current velocity across the surf zone and along the
shore, as well as differences in nearshore topography brought about
by bars and rip channels make any prediction of average longshore
current velocity very difficult. However, in making predictions
about the surf zone, it is essential to at least have a good esti-
mate of the maximum longshore current velocity.

The radiation stress theory of Longuet-Higgins (1970) has
been tested with laboratory data from Galvin and Eagleson (1965),
and field data from Putman, Munk and Traylor (1949). The long-
shore current velocity in the surf zone, Vb’ is a function of the

bottom slope, m, the breaker height, Hb’ and breaker angle, o s
between the wave crest and the shoreline (Longuet-Higgins, 1970).

Vp = Mym (gH,)/? sin 2o (45)

where M], the friction factor is:

-1/2

fe
The longshore current, Vb is measured at the breaking position and

r is a mixing coefficient with a range of 0.17 (little mixing) to
0.5 (complete mixing) with a mode at about 0.2. The depth to
height ratio in shallow waver, g, is taken to be 1.2 and fe the

friction coefficient is set at 0.01. By inserting the above values
in equation 46, the value for M] becomes 9.0. Therefore, the long-

shore current equation according to Longuet-Higgins (1970) can be
reduced to:

1/2

Vp = 9.0m (gH)"/€ sin 2« (47)

When equation 47 was applied to test sets of field and lab-
oratory data by C.E.R.C. (1973), the data yields predictions that
average about 0.43 of the measured values. The measured values
were taken in the fastest field of flow shoreward of the breaker
zone, whereas the predictions were made for longshore current at
the line of breakers. Therefore, it has been proposed by C.E.R.C.
(1973) that the Longuet-Higgins equation be multiplied by 2.3 to
yeild the C.E.R.C. equation:

1/2

Vo=20.7 m (gHy) /€ sin 2y (48)

40




Komar and Inman (1970) derived a longshore current equation
based on radiation stress. Where the radiation stress components
defined by Longuet-Higgins and Stewart (1964) is the excess flow
of momentum due to the presence of waves. The Komar and Inman
(1970) equation is:

_ Tan g ; )
V = C]Um —-T;T—- sin oy cos oy (49)
where V is the longshore current velocity, Tan ¢ is the beach
slope, Cf is the bottom frictional drag coefficient. Um is the

maximum horizontal component of the orbital velocity of the waves
and C1 is a dimensional coefficient of proportionality. However,

Komar (1969) suggested that:

(Tan B cos ab)/Cf = constant (50)

indicating that the variation in beach slope does not produce a
change in longshore current velocity. Therefore, the Komar and
Inman (1970) longshore current equation becomes:

vV = C]Um sin ap (51)

A fourth equation developed by Fox and Davis (1972) uses em-
pirical data subjected to linear regression analysis to predict
longshore current velocity. The linear regression analysis is
based on 3 sets of data collected at Stevensville, Michigan (Fox
and Davis, 1970), Holland, Michigan (Fox and Davis, 1971a) and
Sheboygan, Wisconsin (Fox and Davis, 1972). Each set of data
consists of 360 observations taken at 2 hour intervals for 30 days
of longshore current speed and direction, breaker height, period
and breaker angle. Using a stepwise regression analysis, the con-
tribution of each variable was tested separately, and then in var-
ious combinations. The ratio, Hb/T is related to the mass flux on

volume of water which enters the surf zone and must be removed by
the longshore current. The breaker angle, ap s defines the angle

between the breaker crest and the shoreline and is therefore re-
lated to the momentum transfer in the longshore direction. Using
the regression program, a series of combinations was tested for
the sin of the angle including sin A, sin 2A, sin 3A, sin 4A...
sin 8A. The closest fit was obtained when sin 4A was used for the
angles. For the 1969 set of data from Stevensville, Michigan, the
following equation,
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Hy
V= 5.42(—T——) sin 4A (52)

gave the best fit and accounted for 83.5 percent of the total sum
of squares. For the 1970 data from Holland, Michigan, the coef-
ficient of proportionality was 3.47 and the equation accounted for
78.8 percent of the total sum of squares. For the 1972 data from
Sheboygan, Wisconsin, the coefficient was 2.98 and the equation
accounted for 77.8 percent of the total sum of squares.

The three areas differed in the nearshore bottom slope and
the occurrence of sand bars which influenced the coefficient of
proportionality. The coefficient for each case was approximately
equal to 100 times the bottom slope. Therefore, the longshore
current velocity according to Fox and Davis (1973) is

Hy
vV =100 m(T) sin 4 &xb (53)

When the four longshore current equations were tested in the
model, the equation by Longuet-Higgins (1970) and Fox and Davis
(1973) gave very similar results for breaker angles up to about
20 degrees. For higher breaker angles, the predicted results from
the Fox and Davis (1973a) equation were too low. The values for
longshore current predicted by Komar and Inman (1970) and C.E.R.C.
(1973) were consistantly too high. Although the four equations are
available as options, it is recommended that the Longuet-Higgins
(1970) equation be used for making predictions. If possible, it
is best to test predictions with hindcast data from the same area.
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Subroutine ENRGY

Subroutine ENRGY is used to determine the wave energy during
each hour of the storm which is summed to give the total wave
energy for the storm. The deep water wave energy EO (C.E.R.C.,
1973? is given by

9 - L'U 5.12 . .
- - . : g (HT)
Es 8 8 (54)

where . is the mass density of the water which is 1.94 slugs/cubic
foot for fresh water and 2.0 slugs/cubic foot for salt water, R is
the deep water wave height and T is the wave period. Conversion
factors are included to change from foot pounds/foot to Joules/
meter. The subroutine was tested using wave energy calculation
from previous studies (Fox and Davis, 1971b).

Subroutine ARCTA

Subroutine ARCTA is a customized arctangent subroutine for
finding the angle in radians from the arctangent of a function
(Louden, 1967, p. 119). The library arctangent function ATAN
accepts as an argument the tangent of an angle (sin/cos) and pro-
duces as output the angle in radians. Since the tangent of an
angle repeats itself every 180 degrees, it is not possible to
use the library function ATAN to determine a full range of angles
from 0 to 360 degrees. To compute the correct angle for all pos-
sible combinations of X and Y, it is necessary to test for positive,
near zero and negative X, and positive near zero and negative Y.
The IF statements accomplish these test and produce an angle in
radians ranging from 0 to 2 pi.
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HINDCAST ANALYSIS WITH COASTAL STORM MODEL

Hindcast Tests of Model

The coastal storm simulation model can be used to hindcast
wind, wave and current conditions at a shore site during the
passage of a coasta) storm. Hindcast analysis differs from
forecast analysis discussed in the previous section because
exact storm positions are known in hindcasting, whereas a con-
stant azimuth and storm velocity are used in forecasting. The
results of hindcast analysis at several sites are included in
Appendix C. On the Great Lakes, the sites irclude Holland and
Stevensville, Michigan, and Sheboygan, Wisconsin. On the east
coast of the United States and Canada, sites include the Mag-
dalen Islands on the Gulf of Saint Lawrence; Plum Island, Mass-
achusetts; Cedar Island, Virginia and Sapelo Island, Georgia.
Mustang Island, Texas was studied on the Gulf Coast. (n the
west coast of the United States, hindcasts were made for Mon-
terey, California and South Beach, Oregon.

Sites were selected for hindcast analysis which had weather
and wave data available for several storms. Several of the sites
were studied by Davis and Fox using time series analysis from 1969
through 1975. Other sites were chosen in which there was good beach
profile data which could be correlated with wave and current condi-
tions during a storm.

Stevensville, Michigan, July 1969

A storm which passed over Lake Michigan in late July 1969
has been choosen as an example of hindcast analysis. When the
storm passed over, a 30 day time-series study was being conducted
at Stevensville, Michigan by Fox and Davis (1970a and b). Stevens-
ville is Tocated on the southeastern shore of Lake Michigan about
11 kilometers south of Benton Harbor, Michigan. The shoreline is
oriented roughly north-south with an average nearshore slope of
about 0.033.

The storm which affected the Stevensville area was tracked
from 2000 on July 26, 1969 through 0800 on July 30 (Table 3).
The size, shape, intensity and path of the storm were interpreted
from weather maps for July 26 through 30, 1969. When the storm
was closest to the coastal site at Stevensville, the barometric
pressure at the center of the low was estimated as 994 millibars.
The pressure at the largest encircling isobar was 1012 millibars,
and therefore, the maximum pressure included in the storm was 1014.6
millibars. The storm had an elliptical shape with the length of
the major half axis equal to 960 kilometers and the minor half axis
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equal to 700 kilometers. The orientation of the major half axis
was 30 degrees west of north. For this particular example, the
equation by Fox and Davis (1972) was used to compute the long-
shore current velocity.

The position of the shoreline at Stevensville is given in
the X-Y coordinate system with X equal to 1043 and Y equal to 486
kilometers. The X axis runs east-west and the Y axis north-south
with the origin located to the southeast of Stevensville. The
latitude at the shore location is 42° north and the onshore azi-
muth is 90 degrees. The nearshore slope from the shoreline out
across the nearshore bars is 0.033. The average fetch distance
for the southeastern shore of Lake Michigan is about 200 kilo-
meters.

The storm positions were plotted at 6 hour intervals in kilo-
meters on the X-Y coordinate system (Table 3). The initial posi-
tion of the storm at 2000 on July 26 was to the northwest of the
shore site with X equal to 333 and Y equal to 1229 kilometers.
The storm passed over the shoreline about 0230 on July 28. At
that time, the storm center was located 178 kilometers north of
the shore site (664-486 = 178 kilometers). When the storm track-
ing was complete, the final storm position at 0800 on July 30 was
X equal to 1907 and Y equal to 1830 kilometers. In general, the
storm made a loop swinging down from the northwest, passing east-
ward across the shore, then moving off to the northeast.

The X1, Y1 coordinate is oriented with the X1 axis parallel to
the shore and the Y1 axis normal to the coast (Figure 2). The
origin of the X1, Y1 coordinate system is at the center of the storm
with the positive X1 direction to the right and the positive YI
direction toward the coast. The X1, Y1 coordinate system is used
to locate the shore position with reference to the center of the
storm. The units of the X1, Y1 coordinate system are in terms of
storm radii. The storm radius is 1.5 times the length of the
major half axis which is measured from the center of the storm
to the largest encircling isobar. Using an inverted normal curve
to simulate the storm cross-section the largest encircling isobar
is defined as 2 standard deviations from the center of the storm.
The full radius would extend out 3 standard deviations from the
center of the low. As the storm approaches shoreline, the Y1 value
decreases, and it becomes negative after the storm has passed over
the coast. When the storm is to the north of shore site the X1
values are positive. Therefore, the storm at Stevensville remained
to the north of the shore site for the entire run.

In the hindcast analysis, the barometric pressure decreases
from 1012.4 millibars on July 26 to a minimum of 995.2 at 2200 on
July 27, then increased to 1014.6 on July 30, 1969 (Table 3 and
Figure 10). In the actual barometric pressure record at Stevens-
ville, the pressure dropped to 1000.2 millibars (29.54 inches) at
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STEVENSVILLE, MICHIGAN
JULY 25, 1969
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Figure 10. Observed and hindcast curves for barometric pressure, wind
velocity, longshore current and breaker heicht at Stevens, :
ville, Michigan, July 26-30, 1969. '

47




2000 on July 27. Since small scale weather maps were used for
determining the storm position and pressure values, more accurate
results could be obtained by using large scale maps available at

3 hour intervals. The plot for barometric pressure is a function
of accurate plotting of the storm positions and a careful estimate
of the size and intensity of the storm. Therefore, a correspondence
of the observed and hindcast curves for barometric pressure is not

a test of the predictive capabilities of the model, but is more a
test of the accuracy of the weather maps and of the plotting abil-
ity of the operator.

In the wind observations at Stevensville, the maximum wind
speed during the storm was 12.4 meters/second (28.4 knots) at 1600
on July 28 (Fox and Davis, 1970a). For the hindcast, the maximum
wind speed was 12.0 meters/second at 1400 on July 28. The overall
pattern for the observed and hindcast winds are also quite similar
(Figure 10).

The observed longshore current velocity at Stevensville reached
-116 centimeters/second (northerly) at 2200 on July 27, and 215 centi-
meters/second (southerly) at 1800 on July 28 (Fox and Davis, 1970a).
The maximum hindcast values were -62.9 centimeters/second at 2100 on
July 2/ and 101.9 centimeters/second at 1700 on July 28 (Figure 10
and Table 3). The instantaneous longshore current values were much
higher in the observed than the hindcast values, however, the minimum
and maximum values occurred within one hour of the hindcast values.
The observed longshore current during the storm was exceptionally
high and may be accounted for by the well developed trough between
the nearshore bar and the shore which channeled the current along
the coast. The value used for nearshore slope could also be too
Tow in the hindcast. When the longshore current curve was smoothed
using the 15 term Fourier plot, the hindcast more closely resembles
t?e observed curve for longshore current (Fox and Davis, 1970a and
b).

The observed and hindcast curves for breaker height are very
close (Figure 10). For the observed curve, the maximum breaker
hieght of 1.82 meters (6 feet) occurred at 1800 on July 28. For
the hindcast, the maximum height was 1.83 meters, also at 1800 on
July 28. The overall shapes of the observed and hindcast curves
for breaker height are also very similar but the hindcast curve
drops off more rapidly than the observed curve (Figure 10).
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Additional Hindcast Examples

Additional examples of the hindcast tests are presented in
Appendix B and Figqures 26, 27, 28 and 29. Since the input para-
meters are given in Appendix B a.d comparative plots are in Figure
26 through 29, a full discussion will not be included for each of
the examples.

The observed data for the Holland, Michigan examples was ex-
tracted from a 30-day time series study during July 1970 {Fox and
Davis, 1971a). Holland is located on the southeastern shore of
Lake Michigan about 96 kilometers north of Stevensville. The hind-
cast values for longshore current and breaker height were quite
close for July 3, 1970 (Figure 11), but were somewhat low for July
18, 1970 (Figure 12).

The observed data for the Sheboygan, Wisconsin examples come
from a 30-day time series study conducted at Sheboygan during July
1972 (Fox and Davis, 1973a). Sheboygan is located on the western
shore of Lake Michigan about 72 kilometers north of Milwaukee,
Wisconsin. At this location, the storms moved in a northeast di-
rection and generally offshore. Therefore, the characteristic re-
versal of longshore current direction observed on the eastern shore
of Lake Michigan was not observed at Sheboygan. The curves for July
16 show generally low observed and hindcast curves for longshore
current and breaker height with pronounced peaks on July 17, 1972
(Figure 13). The curves for July 22 show a substantial drop in
barometric pressure, but very low values for longshore current and
breaker height (Figure 14). There is a reversal in longshore cur-
rent direction on July 24 for both the observed and hindcast curves.
Since the winds were blowing predominately offshore, the waves and
longshore currents are quite subdued.

Several additional tables of hindcast results are given in
Appendix B. The output for the Atlantic, the Gulf and the Pacific
coasts of the United States includes a variety of conditions for
storms of varying sizes, shapes and intensities. Tidal predictions
are also included for the oceanic sites where the tide tables are
available. Some of the hindcast results followed quite closely
with the observed data, while at other places, the fit was not as
good as expected.
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Figure 11. Observed and hindcast curves for Holland, Michigan, July
3-5, 1970.
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FORECAST ANALYSIS WITH THE COASTAL STORM MODEL

Short-term Forecasts

4
~
Short-term predictions of wave height and longshore current P
velocity can be made using the forecast mode of the coastal storm ;
model. Given the initial coordinates of the storm, its size, shape :
and intensity, along with the position and orientation of the shore- A
line, it is possible to predict the wind, waves and currents as the H
} storm passes over the coast. In the forecast mode, the storm azi- ]1
muth and velocity are used to plot a straight storm path es the !
storm proceeds toward the shore. In general, the forecast is run :
for 72 hours which is the usual limit for short-term weather pre-
diction. Examples of output using the forecast mode are given in
Appendix C.

In the forecast mode, it is assumed that the size, shape and di
intensity of the storm remain constant, as well as the direction of 3
the storm path and the speed of the storm along the path. The i
operators experience with weather prediction plays an important
role in estimating the speed and path of the storm. For 12 to 24
hours, the speed and path may remain fairly constant, but for
longer periods of time, the storm may veer off on another path
or change its speed along the path. Since it is almost impossible
to predict the path of a storm for several days, a series of dia-
grams have been devised for predicting wave and current conditions
for a storm with a given size, shape and intensity, but without a
fixed storm path.

Circular Storm Test

A circular storm test is used as an example to explain how
the forecast mode works with the coastal storm model. The cir-
cular storm test is based on a series of intense storms which :
crossed over the Oregon coast during late fall of 1973 (Fox and !
Davis, 1974). The size, shape and intensity of the storm, and :
the orientation of the shoreline are similar to those encountered !
at South Beach, Oregon in November 1973 (Fox and Davis, 1974).
The computer listings for the circular storm are given in Ap- ]
pendix C. ]

For the circular storm, the barometric pressure at the center i
of the low was set at 1000 millibars. The pressure at the largest
encircling isobar was placed at 1020 millibars to give a range of ;
20 millibars within the central portion of the storm. The plot of
barometric pressure for the circular storm model is generated by
rotating an inverted normal curve around its center. Therefore,
the barometric pressure surface has a basin shape with the low
pressure at the center, the steepest pressure qradient at one
standard deviation out from the center, and gradually reaches a




maximum pressure at 3 standard deviations away from the center.
Since the outer margin of a storm often interfers with other high
or low pressure systems, it is assumed that the largest encircling
isobar occurs at 2 standard deviations away from the center, or
2/3 of the total storm radius. Therefore, the total storm radius
would be 1.5 times the radius measured at the largest encircling
isobar, and the maximum pressure at the margin of the storm would
be 1.145 times the pressure range from the center to the largest
isobar. In the circular storm test, the pressure at the 2 stan-
dard deviations is 1020 and the maximum pressure included in the
storm is 1022.9 millibars at 3 standard deviations.

The size of the storm is determined by measuring the lengths
of the major and minor half axes of the storm For an elliptical
or wave-shaped storm, the length of the major half axis is mea-
sured from the center of the low to the largest isobar, where it
is farthest from the storm center. The length of the minor half
axis is measured at right angles to the major half axis from the
storm center to the largest jisobar. A circular storm exists when
the major and minor half axes are equal. For the circular storm
test, lengths of the major and minor half axes are 300 kilometers.
When the major and minor half axes have different lengths, the
orientation of the major half axis is plotted in degrees from
north. Therefore, for the circular storm test, the orientation of
the major half axis is 0 degrees.

For the circular storm model, the storm velocity is set at 40
kilometers/hour with a storm azimuth of 90 degrees. This means that
the storm will proceed from its initial position along a path 90
degrees east of north at 40 kilometers/hour. Therefore, if the
storm is tracked for 30 hours, it will move a distance of 1200 kilo-
meters.

For the shore position coordinates in the circular storm test,
X is set at 1000 and Y is set at O kilometers. In the X-Y coor-
dinate system used for plotting storm position and shore location
on a weather map, the shore site is located 1000 kilometers east
along the X axis and O kilometers north along the Y axis. The
shore latitude for the test case is 43 degrees north, the approxi-
mate latitude of the Oregon coast. The onshore azimuth is 90
degrees which indicates that the coastline runs north-south with
land to the east and sea to the west, the same orientation as the
Oregon coast. The nearshore slope is at 0.033 which is close to
the average nearshore slope in the different areas studied. A
value of 1000 kilometers was used for the average fetch which would
indicate open ocean. If the average fetch is greater than the
storm radius, the fetch distance will not have an effect on the
wave and current calculations. However, if the fetch distance is
smaller than the storm radius, the waves will be fetch limited when
the average fetch is less than the effective fetch.
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In compiling the output for the circular storm test, the storm
outlined above was tracked along 12 paths normal to the shoreline
and parallel to each other (Figure 15). The location of the shore
site, orientation of the shoreline, and three storm tracks are
given in Figure 15A. The diagram extends 1200 kiiometers in a
north-south direction, 600 kilometers to the north (positive) and
600 kilometers to the south (negative) of the study site which
is located in the center of the diagram. The diagram also extends
1200 kilometers in an east-west direction, 600 kilometers offshore
(negative) and 600 kilometers onshore (positive) of the shore site.
A time scale is included along the bottom of the diagram to indicate
the length of time in hours from the initial tracking of the storm
to any position along the storm path. The speed of the storm was
set at 40 kilometers/hour, therefore, if the storm started at the
left edge of the diagram, its center would pass over the shoreline
after 15 hours and would move off the right side of the diagram
after 30 hours.
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Barometric Pressure

The barometric pressure diagram (Figure 15B) is set up with
the same coordinate system as the storm track diagram (Figure 15A).
The barometric pressure which would be recorded at the shore site
is plotted at the storm location as the storm moves across the dia-
gram. After 12 storms were tracked normal to the shore at 100
kilometer spacings along the shore, the barometric pressure values
plotted along the storm tracks were contoured to produce the baro-
metric pressure diagram (Figure 15B).

The use of the barometric pressure diagram can be explained
by examining a series of profiles through the diagram (Figure 16).
Three storm tracks are plotted on the pressure diagram indicating
storms which moved from west to east across the shoreline. Baro-
metric pressure profiles are shown when the storm track is 200
kilometers north, directly over the shore site, and 200 kilometers
south of the site (Figure 16). When the storm passes 200 kilo-
meters north of the shore site, the pressure at the shore location
drops from 1022.8 mijlibars to 1013.4, then increases again to
1022.8. When the storm passes directly over the shore location,
the pressure at the shore site drops from 1022.8 millibars to
1000.0, then increases to 1022.8. When the storm passes 200 kilo-
meters south of the shore site, the pressure profile is identical
to the profile which was made 200 kilometers north of the shore
site. For a circular storm, the barometric pressure diagram is
symmetrical, so that profiles cut through the storm a given dis-
tance north or south of the shore site will result in identicai
patterns.

It should be emphasized that the values plotted at the storm
locations are for observations recorded at the shore site when
the storm follows along a given path. Trerefore, the pressure
profile in Figure 16 are profiles of the pressure at the shore
site when the storm passes to the north, over the site, or to the
south. Although the diagram for barometric pressure is identical
to a weather map with storm center located directly over the shore,
it should not be interpreted in that way. The X axis represents
time, and distance along the X axis is used to show the storm po-
sition at a given time. With the other diagrams, such as wind
speed and breaker height, it is impossible to use the time distance
diagram as a map with the storm center located at the shore site.
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Wind Speed and Direction

The time distance diagram for surface wind speed is not

symmetrical because the maximum wind speeds occur when the storm

track is between 100 and 200 kilometers north of the study site

(Figure 17). When the storm passes 200 kilometers north of the :
; study site, the surface wind speed reaches 28 meters/second at ]
‘ the shore site. However, when the storm passes directly cver :
| the shore site, the surface wind speed reaches 18.8 meters/sec-
ond as the storm approaches, drops down to zero as the center of
the storm passes over the coast, then increases to 3C.8 reters/
second. When the storm track is 200 kilometers to the south of
the shore site, the surface wind speed reaches 17.0 meters/second.
The highest wind velocities are recorded when the storm passes 0
the north, and after the storm has passed over the coastline.

To understand the wind pattern during a coastal storm, it is 0 4
necessary to consider both wind speed and direction. Time-distance ‘
diagrams are plotted for surface wind speed, wind direction, on- !
shore component, and alongshore component of the wind in ¢ circuiar
storm (Figures 18A, B, C and D). The surface wind speeds in the
storm were computed by the geostrophic wind equation (Equation 6)
with corrections applied for speed and direction (Equations 10 and
11) to account for the frictional effects of land or sea (Figure 5).

For example, at 40° north latitude, the angle between the surface
wind and the geostrophic wind would be 42° if the wind is from the
land, and 16° if the wind is from the sea (Figure 5 and Table 1).

When the storm passes to the narth of the shore site, the wind
blowing around the storm center in a counterclockwise direction is
generally onshore at the shore site (Figure 18B). The contour lines
indicating wind direction radiate out from the center of the dia-
gram and the arrows along each contour line point in the direction
the wind is blowing along that line (Figure 18B). The dark lines
on the diagram indicate the major wind directions with onshore winds
= 0%, north winds = 90°, offshore winds = 180° and south winds =
270°. When a storm follows a path 200 kilometers north of the study
site, the wind direction at the study site starts out from the south
(274°), slowly shifts over to onshore (0°), and ends up out of the
northwest (52°). When a stom passes 200 kilometers to the south of
the shore site, the wind starts off blowing offshore (209 ) and then
shifts over to the north (71°). Different patterns are used to show
area where the winds are blowing generally onshore, from the north,
offshore are from the south. These patterns related to similar areas
for t?e onshore and alongshore components of the wind (Figures 18C
and D).

A\
~.

Diagrams for the onshore and alongshore components of the sur-
face wind speed are given in Figures 18C and J. The onshore com-
ponent of the surface wind is obtained by taking the ccsine of the
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wind direction times the wind speed, and the alongshore component
is produced by taking the sine of the wind direction times the
wind speed. Storms which follow a path to the north of the shore
site yenerally have a strong onshore wind component, while those
following a path to the south of the shore site are predominately
offshore (Figure 18C). The dividing line between the onshore and
offshore components of the wind follows north-south wind direction
Tines (0° to 180°)(Figure 18B). The onshore wind reaches a max-
imum of 28.2 meters/second along a storm path 100 kilometers north
of the shore .ite. The offshore wind reaches 18.6 meters/second
when the storm passes 100 kilometers south of the shore site and
before its center moves across the coast. The onshore wind speed
is greater than the offshore wind speed because the friction is
Tess when the wind is blowing over the water.

Tne time distance diagram for alongshore wind component in-
dicates that the winds are from the south as the storm approaches
the coast and shift over to the north after the storm passes (Fig-
ure 183). To the north of the shore site, the shift in the along-
shore comporient from south to north takes place after the storm
has passed over the coast, but to the south, the shift takes place
before the starm reaches the coast. The boundary line between the
north and south components of the longshore wind (Figure 18D) fol-
Tows the onshore-offshore line (90°-270°) in the wind direction
diagram (Figure 18B). The reversal from south to north wind is
very abrupt near the center of the storm, and more gradual near
its margin. When the storm passes to the north, the low in baro-
metric pressure reaches a minimum when the storm passes over the
coast (Fiqure 17), but the shift in wind direction from south to
north does not take place until several hours after the low has
passed. This lag in wind directicn reversal behind the low in
pressure was observed during storms at Holland and Stevensville,
which passed to the north of the study areas (Fox and Davis, 1970
and 1971a). Also, the maximum wind speeds were observed after
the lows had passed and the wind shifted over to the north.




N W . W

Figure 18. Time-distance plots of A - surface wind speed, B - wind
direction, C - onshore wind, and D - alongshore wind in
a circular storm.
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Wave Period and Breaker Height

The diagrams for wave period and breaker height are quite
similar (Figures 21A and B), and both resemble the plots for
surface wind and onshore wind (Figures 18A and C). Three pro-
files were plotted across the breaker height diagram to show
what the height would be at the shore site as the storm moves
across (Figure 19). If the storm moves 200 kilometers north
of the shore site, the breaker height will reach 5.30 meters
3 hours after the storm crosses the coast. If the storm passes
directly over the shore site, the breaker height will reach
.86 meters as the storm approaches, drop down as the center of
the storm passes, then reaches 3.63 meters 5 hours after the
center passes over the coast. The decrease in wave height as
the storm center passes directly over the shore site corresponds
to the zero wind velocity at the center of the storm. While
wind velocity may drop to zero at the storm center, the zero
wave height is probably an artifact of the computer model and
does not occur in nature. Residual waves would most likely re-
main in the area and could be built model if so desired.

The surface wind speed is not used directly for determining
breaker height and wave period, because strong onshore wind is
effective in generating waves which will reach the coast, and a
strong offshore wind tends to subdue existing waves. On the Texas
coast during studies made at Mustang Island, offshore wind was

accompanied by a sharp drop in breaker height (Davis and Fox, 1972c).

On Lake Michigan, where a single storm system was studied as it
moved offshore at Zion, I11inois and onshore at South Haven, Mich-
igan, breaker height was over 2 times as great where wind was
blowing onshore than where it was blowing offshore (Davis and Fox,
1974b). Therefore, the effective wind speed was used in deter-
mining wave height and period in place of the surface wind. For
an onshore wind, the effective wind is equal to the onshore wind.
However, for an offshore wind, the effective wind is about one
third of the surface wind speed. For a wind blowing along the
shore, the effective wind speed is two thirds of the surface wind
speed. A cosine transformation was used to produce a smooth gra-
dient in effective wind from onshore through alongshore to off-
shore.

The plot for wave period closely resembles the plot for breaker
height with the maxima to the north of the shore site and displaced
landward of the shoreline (Figure 21A). The maximum wave period of
9.5 seconds occurs at the same time as the maximum breaker height,
3 hours after the storm has passed over the coast. The plot for
wave period has a broad relatively flat area surrounding the maxi-
mum, while the plot for breaker height is much steeper, reaching a
peak and rapidly dropping off after the peak has been passed. The
wave height and periods forecast in the model correspond closely to
those encountered on the Oregon coast during November 1973 (Fox and
Davis, 1974).
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Breaker Angle and Longshore Current Velocity

The plots of breaker angle and longshore current velocity
(Figures 21C and D) are similar in many respects to the plot for
alongshore wind (Figure 18D). The boundary line which separates
the north and south components of the wind is the same as the
boundary which separates the north and south breaker angles and
longshore currents. For field studies conducted at Holland and
Stevensville, Michigan, there was also a close correspondence
between the longshore component of the wind and longshore current
velocity (Fox and Davis, 1970a and b, and 1971a).

The breaker angle is defined as the acute angle between the
wave crest and the shoreline as the wave passes over the nearshore
bar. In deep water the wave direction is roughly parallel to the
wind direction, and the wave crests are about normal to the wind.
The dominate wind direction is often used in wave refraction com-
puter programs to determine the deep water wave angle (Dobson,
1967). As a wave enters shallow water, the celerity decreases and
the wave crest is refracted so that it becomes closer to parallel
to the beach. Snell's Law of geometrical optics is used for com-
puting the refraction coefficient and breaker angle in the surf
zone.

In the breaker angle diagram, the area to the left of the zero
line has breaker angles open to t*e north, and to the right of the
zero line, the breaker angles are open to the south (Figure 21C).
The largest breaker angles are about 32 degrees when the wind is
blowing directly out of the north or the south. As the wind di-
rection swings around from alongshore to onshore or offshore, the
breaker angles decreases from 30 degrees to zero (Figures 18B and
21C). When the wind is blowing directly onshore or offchore, the
breakers are parallel to the beach and breaker angle is zero.

The plot for longshore current velocity is very similar to
the plot for the alonashore component of the wind (figure 18D and
21D). Three profiles are plotted when the storm passes 200 kilo-
meters north, over the shore site and 200 kilometers south (Fig-
ure 20). When the storm path is 200 kilometers north, the long-
shore current velocity reaches 97.4 centimeters/second to the north,
reverses direction after the low has passed, and increases to 81.6
centimeters/second to the south. When the storm passes directly
over the study site, the current reverses from 63.0 centimeters/
second to the north to 129.7 centimeters/second to the south. How-
ever, when the storm path is 200 kilometers south of the shcre <ite,
the current to the north is oniy 4.8 centimeters/secund anu tne
southward current is 58.1 centimeters/second. When the sturm passes
to the south, the reversal in current direction takes place betfore
the low in barometric pressure passes the shore. The maximum long-
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Figure 19. Time-distance plot of breaker height and three profiles
of breaker height in a circular storm.

Figure 20. Time-distance plot of longshore current and three profiles
of longshore current in a circular storm,.
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storm.
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shore current was 144 centimeters/second to the south 4 hours after
the storm passed over the shoreline on a path 100 kilometers north i
of the shore site (Figure 20).

The longshore current velocity is a function of nearshore slope,
breaker height and breaker angle (Longuet-Higgins, 1970). The in-
fluence of both breaker angle and breaker height can be seen in the
plot for longshore current velocity (Figures 198, C and D). Other
longshore current equations were tested which gave similar patterns,
but different absolute velocities.

The circular storm test illustrates the general patterns which
emerge in barometric pressure, wind, waves and longshore currents
as a storm passes over a coast. If the shape and path of the storm,
and the orientation of the shoreline are held constant while the
size or intensity of the storm are varied, the same patterns will
persist, but the absolute values will change for each of the vari-
ables. However, if the shape or path of the storm are changed,
the patterns as well as the absolute values will change for each
of the variables. In the next section an elliptical storm is used
to demonstrate the effect which a change in storm shape would have
on the wind, waves and currents.
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Elliptical Storm Test

With the coastal storm model, it is possible to vary the
size and shape of the storm while holding the intensity constant.
The elliptical storm test provides a good example of an oval shaped
storm which has its long axis extending to the north-northeast
(Figure 22). In both the circular and elliptical tests, the shore-
1ine orientation and nearshore bottom slope are the same.

In the circular and the elliptical storms, the minimum baro-
metric pressure at the center is 1000 millibars, and the pressure
at the Jargest encircling isobar is 1020 millibars (Figures 16 and
22). In the circular storm, the major and minor axes are the same,
300 kilometers. In the elliptical storm, however, the major axis
(500 kilometers) is twice the length of the minor axis (250 kilo-
meters). The major axis in the elliptical storm is oriented 30°
east of north. Therefore, a low pressure trough extends in a
north-northeast direction with the lowest value at the storm
center.

The time-distance plot of barometric pressure is identical
to a weather map made when the storm center is over the shore
site (Figure 22). When the storm track is located to the south
of the shore site, the low pressure trough reaches the shore site
before the low pressure center passes over the coast. However,
when the storm track is to the north of the shore site, the low
pressure center reaches the coast before the trough passes aver
the shore site. Therefore, the long axis of the storm marks the
time when the low pressure trough passes over the shoreline.

Although the range in barometric pressure is the same in the
circular storm and the elliptical storm, the pressure gradient is
steeper in the constricted part of the elliptical storm. The pres-
sure gradient is a function of the size of the storm and the range
in barometric pressure. In the circular storm, both the major and
minor axis have lengths of 300 kilometers, and therefore the pres-
sure gradient is equal on all side of the storm. In the elliptical
storm, the major axis is 500 kilometers and the minor axis is 250
kilometers. Therefore, along the minor axis the pressure gradient
is steeper, while it is more gentle along the major axis.

The time-distance plot of surface wind speed has an elliptical
shape with the high winds concentrated on the right side of the
diagram (Figure 23A). The high wind speeds are a function of the
steeper pressure gradient along the minor axis and differences in
surface friction over land and sea. With the higher pressure qra-
dient, the wind speed reaches 36.8 meters/second in the elliptical
storm, while in the circular storm, it only reaches 30.9 meters/
second. The winds greater than 20 meters/second are split into

71




two areas in the elliptical storm, a major area down the right
side of the storm, and a minor area in the northwest quadrant.

At the center of the storm along the major axis, the surface wind
speed drops down to zero.

The pattern for wind direction in the elliptical storm is
significantly different from the pattern in the circular storm
(Figures 18B and 23B). In the circular storm, the wind direction
contours radiate out from the center and are rotated in a clock-
wise direction from 14° to 45°. The zero wind direction indicates
onshore wind and 180° is an offshore wind. The elliptical storm
is constructed along the minor axis and extended along the major
axis. Therefore, the wind direction contours are gathered around
the major axis which is pointed 30° east of north. Similarly,
the contours are spread out from the minor axis. In the elliptical
storm the zero contour extends 45° east of north, and the 180° con-
tour extends 67° west of south. The 270° contour indicating south
winds points 17° east of north and the 90° contour for north winds
extends 25° west of south.

The difference in wind direction pattern results in major
changes in the onshore and alongshore wind patterns in the elliptical
storm (Figures 23C and D). In the circular storm, the boundary line
between onshore and offshore winds runs in a generally east-west
direction with onshore winds when the storm track is to the north
and offshore winds when the storm track is to the south of the study
site. In the elliptical storm, on the other hand, the boundary he-
tween onshore and offshore winds has shifted so that it runs general-
ly north-scuth with onshore winds to the east and offshore winds to
the west (Figure 23C). As the storm approaches the coast the winds
are offshore, and after the storm has passed over the shoreline the
winds shift to onshore. When the storm passes to the south of the
shore site, the shift from offshore to onshore winds takes place
shortly after the low pressure trough passes over, but when the
storm track is to the north, the shift in wind direction shortly
preceeds the low pressure trough. The maximum offshore wind is
21.4 meters/second as the storm approaches, and the maximum onshore
wind is 30.2 meters/second after the storm has passed over the coast.

The boundary for the alongshore wind which separates the north
wind from the south wind extends generally in a northwest-southeast
direction (Figure 23D). It resembles the alongshore wind diagram
for the circular storm, but the axes are rotated about 20° in a
clockwise direction (Figures 18D and 23D). The maximum south wind
of 21.1 meters/second occurs when the storm track is to the north
of the shore site and after the storm has passed over the coast.

For the north wind, the maximum of 28.1 meters/second occurs along
a storm track 200 kilometers south of the shore site after the storm
has passed the coast.
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Figure 23. Time-distance plot of A - surface wind speed, B - wind
direction, C - onshore wind and D - alongshore wind in
an elliptical storm.
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Figure 24. Time-distance plot of A - wave period, B - breaker height,
C - breaker angle and D - longshore current in an ellip-
tical storm.
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The plots for wave period and wave height in the elliptical
storm are very similar and closely resemble the plots for wind speed
and onshore wind (Figures 23A and C, and 24A and B). Both wave
period and breaker height reach their maxima after the storm trough
has passed over the coast and the wind has shifted from offshore
to onshore. In the elliptical storm, the maximum wave period is
8.9 seconds and the greatest breaker height is 5.1 meters.

The greatest breaker angles for the elliptical storm occur
when the wind is blowing out of the south (270°) or the north (90°)
(Figures 22B and 23C). When the storm track is to the north of
the shore site, the greatest northerly breaker angles (32.3°) are
present just before the low pressure trough passes over the coast.
However, when the storm track is to the south of the study site,
the Targest southerly breaker angles (32.4°) occur just after the
storm trough has passed the shore.

The plot for longshore current in an elliptical storm is very
similar to the plot for alongshore wind (Figures 23D and 24D). The
boundaries between north and south winds and north and south currents
follow the same 1ine and the maxima are in the same position. The
maximum northward flowing longshore current (44 centimeters/second)
occurs when the storm is on a track 300 kilometers north of the shore
site, while the maximum southward flowing current (143 centimeters/
second) occurs on a storm track 100 kilometers south of the shore
site.

In summarizing the comparison between a circular storm and an
elliptical storm of the same intensity, the differences in baro-
metric pressure and wind direction influence the other environmental
parameters. In the circular storm, the highest surface winds are
found when the storm track is to the north of the shore site while
in the elliptical storm, the maximum winds occur in a north-northeast
trending zone to the right of the low pressure trough. The boundary
between offshore and onshore winds 1ies generally east-west for the
circular storm and north-south for the elliptical storm. Ffor along-
shore winds, the boundary between north and south winds is rotated
about 30° in a clockwise direction in the elliptical storm. In both
the circular and elliptical storm, the wind direction contours radi-
ate out from the center and are rotated clockwise due to surface
friction, but in the elliptical storm, the contours are gathered
around the major axis. Wave period and breaker height in the circ-
ular storm resemble wind speed and form pods to the north of the
shore site, while in the elliptical storm, period and breaker height
form linear trends to the east of the shore site. For both storms,

the longshore current follows the same pattern as the alongshore wind.
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CONCLUSIONS

A mathematical model has been developed and programmed for a §
computer to forecast barometric pressure, wind, waves and longshore
currents during passage of a storm across a coastal site. The fol- -j
lowing set of conclusions can be drawn from the coastal storm model. r

1

1. The shape of a coastal storm can be approximated with an ellip- .
tical model by specifying the lengths of the major and minor half 4
axes and the orientation of the major axis.

2. The barometric pressure profiles along the major and minor axes
of the ellipse are represented by a series of inverted normal curves.

3. Geostrophic wind speed and direction at any point on the earth's “J
sufrace under a storm are computed from the latitude and barometric
pressure gradient.

4. Geostrophic wind speed and direction are used to compute surface
wind speed and direction over land or sea.

5. MWave period, height and direction are calculated from the wind
speed, fetch and duration as the storm passes over the coast.

6. Longshore current speed and direction are computed from wave
height, period and direction, and nearshore bottom slope.

7. Wave and current hindcast data can be used to test the model when rﬂ
the size, shape,intensity and track of the storm are known.

8. 1If the storm azimuth and velocity are assumed to be constant, fore-
casts of wind, wave and longshore currents can be made for a coastal
storm.
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iFBedetdAw suAstsocke AT L CUm TiOE et,koedst 5L0PE AT MNlum Tt
TowniToudesala BN
el FORMAT, vua'ton, i nNAL FURM ONUMBER 1S'efoe2/ )
T YA AR R PR PR 4 JTE LSyt PN
P T F S I R BY Byl Pe. = FouRy NUMBEKR 15" sFbed /)
ST el et WA el b e wrlTE v BN
Treratt e luNNAL Jb = FORM huMpeR 15" eFoeg/)
R A R IR L I
L I R IRV ) Tlobk = Bls NUMBER ISRl )
L T 3
.t e

AR S SR APZ YA PRNE FFIRL SRR RERY VLI R]
CUNDI L TEor AL T T bt (T a e

BHTAKEX 9T 9 LSl eaReTsoe PRE UL 1 Tou,

wINE e lne s twits e i Tyt wlND te e,

AR
fiteole’t

eTilEe
Ev3ausi
)

TR T LT M T CRALT T L TRAL T B M Tl
T ™ 9 T T e M L o T T "M S o TB3 M LTy Lt

[ S NN AR 1Y

W TR

aai K
foe aRITEI 3N
So. L RMET (fngsT

Lo NME T T TN Tl CRAD ST TRAL 9T 300 T INCHE S e Tw
IR C AN S A A NI T AL S SRR AT S LR R PFRY S AR -PARI A REREE DISI SN
o o TR E T AT et Ut s T AT T SR

ST derdl

e

LT LN
P20 K LRMAT Chee et
BoY amlTilsedt
o ELRMAY G

< CALL SUBRUUTINLS 70 CETERMINE (OCATIUN AND COMFUTE wiND» wAviSe
< AND TICES AT tATH LuCailon
DL S0 Talens
CALL LLTAT I VIl eUlwlaviwCeSHAZ s Yo EA o0y
Ch b 1Ll 9lAsdal s daPMINGEVAY gL ] AL LAY ALDLA)
CALL WINU!X oY ol oPMINGPMAR b GLAT gat UhE A AL SHMIUNSH I DHANGIERAL & 1Ay 2 AL
ITAYSHAZWERL s dAriSL L ekt ANl
IF vlefwel ™ wo T2 MQC
DAL LELATITINT W RENCD eE T
wntCvamt 1T
Lace ETiMLibEanL et [wTaTITaDNATS)
IV 820
e LRAThOTINT
EouMeCal
ENTLeU
EFele0

IHUURS [ LTRT
5S¢ CALL PETCHEABeXo T sSTFOMY
TLFLMaSTFI~
[F BN gt TaSTRLMI T FOMeBNF(H
CALL WAVES TEFWAD s DRATN G T POt FETCoMELGT W PRRLD i
RIS TIRY Stathbebd
88 AL TLDE ST T PN ISTRI VTR T LAY T (LR SHRIsSCP v SLUPEr] o THEAN)
e CALL SUMF T SHANOPER D emELGT s 9L CRE sl o NANavL S vt M Tren B0
FOBFAN m1R0,. . wPeayeud

ot BT DY A Y N
“ FOLASLVE
N oMy LTE mAwE AN CNUSHLURE L wMEST ENER LY

ELSes. 2570 Lt ARSI E L L NN Yl 4

HL R DAY T

a8 ENeEnef S
A

o’ Cebreeb S

Y TN

3 fowiw s b ol ERGL 0T INT e 0b

——




ESUMSE SUM+E

HBlwHBeIMF

TID1=TIDXSCMF

V1aVLSHICMF
PPaP /PG

wRITE(3530)
1 HBLl+BRANGsV]

UPTaUt ] ) #ARCK s, S
VPTay([leaeCKA+re5
WSRFawSURF #(KTS
UNBONSHEIKTS
ALeALSHOCKTS
EFcEFWND®CKTS
HTImnE [ GTRCMF

INOUR~U9TnVPTnl'VQPPnsnANGnNSﬂF;ONuAL'LF.NYlthRgu-

530 FORMAY(BX-IZ-2F7-Q-2F7.Z»F8.2ka7.l.F7.1sFE-th7-l-F1.(-iI.Llil-(l
IFUIFTIDGGTC0! wRITE(3,53}) T{D1

83

—

FORMAT ( 1M+ s liaxeFS, .

TAQUR = [MQUR+ I+ IR (T INT )
TFUIHOUKe LT 024 I mUUR s I MOUR =26

S0 CONTINVE
E.SCT=ENaER

ESOMBESUMSC J0uL
ELSCTELSCT®CI0UL

EPsgPel JOUL
ENsENSTJOUL
AKITE(3+54G)

ESUN.LR(NN’:CZ(NN).C)lNN)vELS(T;CllNN)-(ZlNNIv&:(NN)

5~JVFOR%AT(LX-//;IA-TS‘&AVE ENERGY IN THE BREAKER 20NE ='4E10e3+3A4//
41XsT5,TOTAL LONG-SHOKE CURRENT ENERGY =% ,£1043+3A47)

WRITE(De5421

Evtil‘\Nl’CZINN)-(3l~NluEN-(llNN)chiNN).CB(NN)

$42 FORMAT(LIX 15, TOTAL PCSITIVE LONG=SHOKE QURRENT ENERGY =*4E1G, 3,
L3RG/ /1K TP TOTAL NEGATIVE LONG=SHORE CURRENT ENERGY »'+t10e3,3A4)

GL 10 bU8S
100 CALL EXIT
EnD
RV
SOELETE
*STURE aS  UA
/7 Jo8
ts FOR

SThMA
STRMA

FORE 3-86~001

®lOCSILARD#:132 PRINTER)

#ONE WCRD INTEOGERS

*L1IST SOUKCE PROGRAM

SUBHOUTINE +O

SEINReAWNALT )

COMMON LI1301,vil3dn

<
< FORECASTING - COMPUTE STORM POSITIONS FRULM INITIAL POSITION,
C VELOCITY AND AZIMUTH
[4
TiINT=) W0
RAD®57,2958
READ(2+9031 SVFLIAZTaw(llsvi
903 FORMAT(4F7,0)
TFANAUTYE 1ele2
1 WwRITE(3910C1 SVEL.AZY
FLQ FORMATI9Xe'STORM VELUCITY ®' (Fasdr' KILOMETERS/MOUR'/
1 9X¢*STORM AZIMUTH @) 4Fa.d/
GO 10 5
2 WRITE(34911) SVELWALY
911 FORMATI9Xs!'STORM VELUGCITY «',FasQs’ KNSTSH/
1 9Xe'STORM AZ[MUTH =1 4Fa, (/)
5 CONTINUE
Yilimutli/a
Vilievill/za
D1STeSVELOTINT/A
AZMa90~AZ |
TFLAZMYE 21432420
31 AZMNAZIM+360.
32 00 3% [=2eNR
VI eUil=11+0]STeCOSIALIM/RAD)
VU eV =11 sDISTo®5 INCAZM/RAD)
35 CONTINVE
RETURN
END
27 DuP
SOELETE FURE
*5YTRE w> uA  FQUkt
froa08 HIND 3-86-001
it FUR

50 LARD 1132 PRINTER)

*ONE WOURD INTEGERS

SLIS! SGURTE PROGHAM
SUBGLUTINE MINLINRIA)
COMMON U1 1301 .v! 130G
IMFNSTLN 203007130

“INZIASTING

DG 1% lelevu

REAL (/299020

= LUMFUTE STUKM POSTITIONS AT ] HOUk INTERVALS FhUM

b HUUN PLSITIONS UN WEATHER mMaPS

avlievag

92 FORNMATIZF TN

IR TRARRY

Yiitsrtl /A
15 T INUE

NEiwNK=]

lie]%e=3
w titexrly

v lelanNxg

et X N




villisyity
DIFUs(X(lel}=X(1})sbe
DIFvalY(leil=Y(1})/ts
DO 20 Jals5
valley
UMl sy (M=11+DIFU
VIMIsy (M=1l+0tFV

20 CONTINVE
ISE LY S I
VIl =X INX)
YillimyiNx}

Nx=11
RETURN
END
/¢ DuP
*DELETE HIND
*STORE WS WA HIND
/4 J08 LUCAT 3=86-001
/7 FOR

*I0CSICARD»1132 PRINTER)
#ONE WORD [NTEGEKS
*L1ST SOURCE PRCGRAM
SUBROUTINE LOCATIUSTsVSToULOCsVLOC +SHAZ 9 X0 Y sEAZ»P 9 )

U AND v COORDINATES ARE READ INTO TmE PROGRAM [N KILOMETERS ANL
CONVERTED 10 UNITS PROPURTIONAL TO THE MAJOR AXISe ThEk U AND V
COORDINATE SYSTEM [S A RrITANGULAR GRID wiTH U FUINTING LAST,

V PUINTING NORTHs ANLD TrhE ORIGIN LUCATED TO THE SUUTHWEST OF Tnmi
SHORE LOCATION.

SUBRCOUTINE LOCAT 1S USED 10D STAbULISe THE X AND ¥ COQRDINATE
SYSTEM wilw THE URIGIN AT THb CENTLE OF THE STORM AND PUSITIvt
Y OPGINTING UNSHORS e AP GATIVE Y MUINTING CFFSMUREs PColTIve %
TUOYmE RIuet FAULN L WNsronEs AND NELATIWE X TC THE LEFT FACING
FREL SIS

oncAAnCANNANA

RADaL T, 5%y

UsUbT-LCl

waT

flueele, enl,
CALL AnlTA ANUIwV
Asafo=tHal JRAL
AEmC @ CSIA)
YeleSINIAG
CITREAZ+90,=51A2
IFA QI a(Te3b0e) DIFsDIF~360,
AZL:A=DIF /RAD
Va=28(CHiA2)
WE2eLINLALY
RETURN
END

/0 DUP

*DLLETE LUCAT

*5TORE w5 JA LOCAT

77 208 T
/7 XEW CSTAM
SLOCALCSTRMLOCAT s WIND s DECAY s EYIMEsFETCH o WAVE S SURF st MUY o TIDE o1 ND
*LUCALFOREC
HOLLAND s MICHIGAN
1UULY 7s 1970 11
101 24 1504 140 4l
1000+ O S0e #0033

/7 408 ELibS 3=B6-ul L
7/ FOR
*{OCSICARD 1132 PRINTER)
®ONE WORD NTEGERS
*LIST SUOURIE PROLRAM
SUBRIUTINE ELIPSIALBeXL vl ob™[NyOMAL ] sERADIXAWYALIDZA"

A¥al

GRADIENT AT ANY FUINT wliTwi4 AN ELLIPTICAL 3TUKM,

oo

“ADaS 7,358
Re8/4
AheA/a
BAcg/A

A AND B AWE THE MAL. & ANT MINOR AXES (F THE STURM LLLIPSE
POINT X1evi LIES N A SELLN. ELLIMSE allH AXES AL ND Bl

[A¥aRaNat

AleguRT(x]0024 - 00, /Ree;
Rlewoa;
Rleqjafie®0) Ajseleg]

.05 YAt [NTEREUTION oF THE A AXIS wiThW A LINE NURMAL 10T TwE
TANGENT CF THE SECOND ELLIESE AT D javl,

AN Nakat

X2®v). L je=HASS, Saabe, )
TAeGLRT HASO B (| ox 0O, gpRe) |

K& ANL 77 AWE AT Tk INTERSELCTION OF THE L INE NORMAL T, Twb
TANGENT b TRb BEQLwb ELUITS e AN THE ST lNM ¢ 1BSE.

e s

PPl el
viemv2

B
2 0 INGE

SUBROUTINE ELIPS 15 LSEU T Dt eMING THE wIND ANGLE AND FRLESHunL




Dis3URT{(a]-a0 o2 + vina2
D2sSURT(lx 2=l ne; + Y2082
U2AE02%4

IFID2AssTaA) ViAcA
LRADEO 1, D2

Jlsde®al

POlrsPMIzwPMIN
FINC:PLIFRESPI=Ll®002/ 24}
FlaEmax=PINC

4
< S1 16 THE BAKOML "RIC PebSsunt AT XU CUMPLTED UN A NUKMAL C(URVE
C ALONG THE MALUN ARLS, TH[S PRESSURE vALUEL 15 USED IN DETENMINING
< THE PRELSUST GwAC I AT ARURMAL TC THE 19UBAR AT PUINT Alsvi.
<
ey EwelDedi Yitriss 'l
Al sBuevesi o Ale. o,
VAcA [ we; /)
riapLee’ ]
<
< CoveaoTE Tee TARGENT 7o THE BtoiPst AT x1 AND Yi Ty DETERMINL
N TAE NG DambLTL N
L
[FixlaoTe0eleANLaTiauloleC) GO T2 1L
JFiX1a0 ea0sldsAND @Y aL Yoo OO T2 12
PRI PR A DY SUR | TaCeQ! Ov Tu 1o
TR e Tede s M N e Te Qe e TU L]
L. tE-=TA
PR R
12 vAs-va
25 TUNTINGE
o T RN
ERD
F NI
*OLLETE ELIPS
*3TURE wS WA ELIPS
s/ LB winD 3=toL=uui
s FCR

#ICCSICARD 1132 PRINTER)

€ONE wurl INTEOERS

*1ST 9 URCL PROGRAM
SUBRCUTINE WINL (XY s obMINGPMAR 9L AT s n L UKRF s AL SHAUNSH Y SHANG ERAL Y
IP1eAVIAIYA I SHAZIEAZ IDZAVISIND S EFWNE)

C
I v wILD TL DETLRMINE ThE GEUSTUPRIC wIND SFEED
< % O THE BARLMETRIC PRESSUNE GRAUIENT. THE SUKFACLE
CIRECTITA ARE TETE<MINED LVER LAND ANL StA Fhkiwv
< ! LoTiung Avh iE0 TC THE LEOSTHurall w[NDe THE ONSHURE AZIMUTH
Tran NSy us ANC A_INODHURE COMPONENTS OF Tre wiINDe.
Wl wrzbu i5 wdel 1o #IND Thy WAVE MEIGHT, PLRIGULY
- TowialliTYe
AL =L e TR
B 7.
R S I 4
< Tes pAUYLTRLL bRt L_LxE LRrASIENT ACUNO A NORMAL CURVE 1§ WSED To
“ AL LWlATE TeE oSTRUE R Wl SHEED.
CURSZe®IMLGASS NI LT/ KAD
*LRAD
E LOMAX~ 1]
PN Em IR e D (e ww2, 0,0
LovMax =B INC
w2 INC LA
aliabiarel s SRISIDPUN/S000. )
AL ANITATANG  XAsYA,
Ol¥=rals90 THAL
H O LA YOe) UIF=D1F=360,
WAL e TALSANG=DIF
IF o wANGeLTe0a™ ) wANGEWANG 36T
15 wdN et o3l WAN s e wANG=2560,
Z “OAND mr YA ANL  LR=p TN FACT RS UBED Ty DETERMINE Sumxt ACE w]'
¢ SR F o AN UTRECTD N FRGY O GELSTR PRIl wiNe UVER CAND AND St A
£ CANL = e HETA e gy
¢ Lok - B, HETa = 59
. M = “lalthee Y
[4 e T A Noge o NU o= et igE ok
: . OUF et - NEGATILE ¥
“ e T AL TeaLnle = kAT IvE Y
-k Akt
N -

€ v ISCAND SRTIUNG BOAND dECA vALUES Pk THE St A AWE WbLL

P B T A AT
8 Re 300 kS
Bl TaAmE .,

M}
T Ao gLN TRANSF, EMAT N LS sED (' A XL DEOGREE NANSTT D e LNy
AR SEEUL e Bt nromiy iNE . Foll CAND AND SEA LT es T UND ARG
S50 LTS Tt THANS LTI LN TN e BHLUERTIONATE (2 avt oo
ar AN 34 MRCTIONY m Tl Tae TmANSITI N o,




AD=A0B7 858  yILLIAMS COLL HILLIAMSTONN MASS F/6 &/2
COASTAL STORM MODEL. (U

APR 76 W T FOX» R A DAVlS

UNCLASSIFIED TR=-14

N000153~69~C~0151
Y
2

Aoarama




¢ ey ot e

At L

29 SINSSIN{SANG/RAD)

IFISINS=¢3) 35+30030

B%.00019

BETA=29,

GO TO 50

35 IF(SINS+.5) 36140040

36 82000065
BETA=50,

GO 10 $0
40 IF(SANG=90.) #1s41142
41 SANA=SANG#3,

GO TO 48

42 IF{SANG=1800) 4314364

43 SANA=180e=3¢@(180¢~SANG)
GO TO 8

G4 JF(SANG=270e) 45¢043,46

45 SANA=180.+3.(SANG~180)
GO 10 «8

46 SANA®360e=3¢#(3600~SANG)

48 B=s0001%{1+275+0e6259SIN(SANA/RAD} )
BETA=3945-10,50SIN{SANA/RAD)

50 BETR®BETA/RAD
COTA=SIN(BETR)/COSIBETRI+COR/ {B*COS(BETRY)
ALPHA=ATAN(14/COTA ) ®RAD
IF(NX) 51552452 d

651 SHANGEKWANG+FCs=ALPHA
SANG»SANG=ALPHA
Nx=l . ;
6o 10 27 3

52 CONTINVE :
VHCORaCOR®SIN(ALPHA/RAD)/ (B2COS(BETR))

WSURF sVHCOR®WSGEQ .

3

(-]

LS AT SRRt -

ONSHORE AND LONGSHORE COMPONENTS OF THE SURFACE wIND

[aXa¥al

ONSH=WSURF #{0S [ SHANG/RAD)
ALSH=WSURF®SIN(SHANG/RAD)

EFWND ]S THE EFFECTIVE WIND SPEED USED IN DETERMINING WAVES
AN OFFSHORE WIND IS ASSUMED TO BE 4333 TIMES AS EFFECTIVE IN
GENERATING WAVES AS AN ONSHORE WIND.

[aNaNa¥alal

EFWNDaWLURF®{ 46667+ 433339C05( SHANG/RAD) )}
IF (SHANG) 55,60,60
55 SHANGsSHANG+360s
&0 CONTINUE ]
IF (SHANG=3604) 70970065
65 SHANG=SHANG=360+
70 CONTINVE
RETURN
END
/7 DU¥
*DELETE WIND
*STORE WS UA  WIND
A

/4 JoB DECAY 3-86-001
/7 FOR
©10CS(CARD#1132 PRINTER)
®ONE WORD INTEGERS
OLIST SOURCE PROGRAM
SUBROUTINE DECAY(TINTyPERODHEIGT}

c ‘
4 SUBROUTINE DECAY IS USED TO FIND THE DECAY IN WAVE HEIGHT AS ¢
< THE WAVES MOVE AWAY FROM THE STORM CENTER.
<
< v
Cese FIND LOGARITHMIC ATTENUATION COEFFICIENT b
c

FREU®=]+/PEROD

ATCOFu10e®®( ( (FREQ=0.06)/(0.0324))=1¢)

IF(ATCOF4GTa140) ATCOF=1,0

IF(ATCOFeLTe0al) ATCOF=0,1
<
Coee FIND PROPAGATION DISTANCE IN DEGREES
C

DI1STule560T#PERQD®T INT23604/400740
C

Cess FIND DECAYED WAVE HEIGHT
<

HEIGToHEIGT®{2,7183)18#(=2,8{0.1191¢ATCOF)I®*DIST}

RETURN
END \
/7 DYP
*DELETE DECAY
*STORE WS UA  DECAY
77 408 ETIME 3-86-001
77 FOR

*]0CS(CARD #1132 PRINTER) :

*ONE WORD INTEGERS :

#L1IST SOURCE PROGRAM !
SUBROUTINE ETIME (WSNEWsOLDNsHOURSDRATN}

<

<

< SUBROUTINE ETIME 1S USED TO DETERMINE TWE EFFECTIVE FETCH AND

< DURATION FOR THE NEw WIND SPEED FROM THE LAST PREVIOWS WIND SPEED.
<
[

ses CONVERT M 1O FT AND M/SEC TQO FT/SEC

90 .




e e s e

Cosen

10

Coos

Cosve

// OUP
#DELETY

*STCRE

// 208
/7 FOR
#10CS ¢

H=OLDH/002048
WSsWSNEW/0e3048

FIND EFFECTIVE FETCH USING NEwW WIND SPEED AND OLD WAVE MEIGMT

Us{(3218H)/({0:20830u5002,))

SUMsU

DO 10 K=1,51,2

laK+2

SUM=SUM+Yw® ]/

CONT INVE
Fa{wboe2,/32411218UM/0.0129)592,38

CONVERT FROM FT TO NM AND FT/SEC TO KTS

F=F/6076¢
WSKTS=WS#36004/60766

FIND EFFECTIVE DURATION USING DERIVEDO EFFECTIVE FETCH

EFDUR= (F/ ((WSKTS/104)1#80,72010+%#003))%%0.8

DRATN=MHOURS+EFDUR
RETURN

END

E ETIME

WS UA ETIME
FETCH 3-86+-001

CARD#1132 PRINTER)

#ONE WORD INTEGERS

*LIST

[aNaNaNa¥a¥alaV¥al

Cose

100

112
120

130

lag

Cene

1%0

160

Cone

200

SQURCE PROGRAM
SUBROUTINE FETCH{A+BoXAsYASF}

SUBROUTINE FETCH IS USED TO FIND THE EFFECTIVE FETCH AS A STORM

MOVES ONSHORE OR OFFSHORE. THE FETCH LENGTH IS DETERMINED FROM

THE FETCH AREA WHERE THE WIND 15 BLOWING TOWARD TME SHORE SITE.

THE EFFECTIVE FETCH AREA IS AN ELLIPSE WITHIN WHICH THE WIND 1S

BLOWING AT GREATER THAN HALF THE MAXIMUM WIND SPEEDe THE MAXIMUM
EFFECTIVE FETCH IS THE MAJOR AXIS OF THE ELLIPSEs

Ru(A+8) /2.

FMAX=0 5881 %R

Plelelul59

RAD®5742958

NaxXARA

YIYA®A

IF (ABS(X}4GE«(OeloANDe ABSIX14lTo(1e/3,#R)) GO TO 100

IF (ABSIX1eGE+{1a73+2R10ANDe RBSIX)eLT+10s04464648R)) GO TO 200
IF (ABS(X)GEs(Ceb44uas®R)) GO TO 300

G0 10 400

X GREATER THAN OR EQUAL TO ZERO AND LESS THAN 1/3 R

Y12SURT((1e/30®RIPY,¢(1e/24%FMAX) PO =Xu82,]}
Y2oSURT((1s/3.%R) 82 ,axoe2,)
Y3I=0e0

Y4ya=Y2

Y5=-SURT(Reez ,~X#82,)

IF(Y4GELYLl GO TO 110
1F(YelTeY1sANDeYsGELY2) GO TO 120
IF(YeLT.Y2,ANDsY4GELY3) GO TO 130
IF(YeLTaYIANDSY GE,YA) GO TO 140
IFiYeLToYaoANDSY2GELYS) GO TO 150
IFivsLToY8) GO YO 180

SC 10 &cO

FaFvAX

GO 10 590

RATIO=(Y=Y2}/(Y1=Y2}
CURVE®Lo=(1e+COSIPISRATIONI /2,
Fale/2¢9FMAXSCURVE® ] /2, 8FMAX

GO TO 900
RATIO®ABS 1) /SQRTIAVE2,ev2002,)
FMINSRATIO®] ¢/249FMAX
RANGES ] o /24 8FMAR=FMIN

CURVE®R] 4=COST (1a=(Y2oY)/{Y2=Y3)}0P]/24)
FoCURVESRANGE +FMIN

GO Tu 500

RATIGeABS(KI/SURTIXRE2 074002,

NOTEess THIS 15 THE SAME RATIO AS 130 SINCE Y2 = Y&

FMINOGRATIO®] /24 ®FMAX
RANGE®14/2,9FMAL=FMIN

CURVER 1o (CB(lYoYR)/(Y3=Yb)OP]))/2,
FoCURVE SRANGE *FMIN

) 10 300

RATIOa(Y=YS)/iYa~YS)
CURVER[1o%(OSI{1e=RATIOIOPI) )/,
FoCuRVESL (/2o SFMAK

w0 10 300

Feel

GO TO BOO

X GREATER YTHAN OR EQUAL TO 1/3 R AND LESS TMAN Osb6s4sa R

Y10SART((1e/24OFMARIO082,6{10a/3,%R) 082 ,ox082,}
Y2e~8QRT(ReOZ , ~x082,}

a1t

—




IF{YeGT,Y1) GO TO 210
IF{YeLEsY1sAND4YeGT.Y2) GO TO 220
IF(Y.LENY2) GO TO 230
GO TO 400

210 FaFMAX
GO 10 500

220 RATIO=lYl=Y)/1Y1=Y2)
CURVE={14+COSIRATIO®P1)}/2,

FaFMAX®CURVE
G0 TC $00
230 FuQe0
GO TO %00
<
Coees X GREATER THAN OR EQUAL TO Osbbédse R
<

300  Y1=0.0
Y25=SQRTIR®E2,~(0s44bsoR) 82}
IF(YeGToeYl) GO TO 310
IFIYeLEsY1eANDsY¢GToY2) GO TO 320
IF{Y.LEsY2) GO TO 330
GO TO 400

310 FuFMAX
GO TO 500

320 RATIOs{Yl=Y)/{Yl=Y2}

CURVE® (14 +COSIRATIONP) /2,

FaFMAX®CURVE
GO 10 %00
330 Fe04Q
GO TO0 %00
[
Cese ERROR CONDITION
4

400 WRITE(3,410)
410 FORMAT(1X+'LOGIC ERROR ENCOUNTERED IN SUBROUTINF FETCHeeot)

Fe0.0
RETURN
500 IF(XeLTot06)) FuQoSeaF
RETURN
END
/7 DU
®OELETE FETCH
*STORE W& UA FETCH
/7 J0B WAVES 3-86-001
/7 FOR

*[OCS(CARD#1132 PRINTER!}
®ONE WORD INTEGERS
*LIST SOURCE PROGRAM

SUBROUTINE WAVES(SPEEDsTIMEyFEYCHoEFETCoHEIGT JPEROD+ IOUT }

<
< SUBROUTINE WAVES 1S USED TO DETERMINE WAVE PERIOD AND MEIGHT FROM
< WIND SPEEDs DURATION AND FETCH.
<
Coes UNIT CONVERSION PACKAGEe«oKM TO NMes«M/SEC TO KNOTS
<
FCHNM=0 oS54 00%FETCH
SPOKTu]l,94394SPEED
<

Coes EFFECTIVE FETCH PACKAGE
<

EFETCo{SPOKT/10s 1790472010920, 30TIMES®],2%
IFIFCHNMOLTeEFETC) EFETCFCHAM

Cooo UNIT CONVERSION PACKAGEss oM TO METERS. 4 oKNOTS TO M/SEC

EFETC=EFETC/045400%1000,
SPDMS=SPDKT /149439

Cees WAVE PARAMETER PACKAGE
<

CONSTo ! 9eB00Q#EFETC I/ SPOMSOR2,

HEIGTo [SPDMS®#2,80,2830 TANMIO401259CONST#00,42))/9.8002
PERQD®(2¢93:141399SPDMS®) 20 TANHIOCOTTECONST#20,25)1/9.8062
EFETCEFETC/10000

[FEIOUT.EQel) RETURN

IFIIOUTEWe2} GO TO 200

<

Ceee ERROR CONDITION

<
WRITE(34103)

100 FORMAT(1Xs'ILLEGAL OUTPUT OPTION IN SUBROUTINE WAVES')
RETURN

<

Cose MNON=METRIC OUTPUT OPTION

<

200 EFETCSEFETC®0.9400
MEIGTeMEIGT®3.2008
NETURN
(]

1/ OUP

SDELETE wAvES

SSTORE WS UA WAVES

77 JOB

71 FOR

SJOCS(CARDs 1132 PRINTER)
SONE WORD INTEGERS
*LIST SOURCE PROGRAM

92
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K A%

SUBROUTINE TIOE (ST+TNsFNoISTRToTHRsTOAY»TIOX»SLTOPoSLBOT sSLOPEsT s
1 TMEAN}

PERIODS FOR THE MAJOR DIURNAL AND SEMIDIURNAL TIDAL COMPONENTS

[aXa¥al

TM2=12442

152212.00

TKin23.93

T0l=25402
HR2244®TDAY+FLOAT( [STRT ) +FLOAT ([=])=THR
ARGR=6¢2832#HR

COMPUTE THE AMPLITUDE OF THE TIDAL COMPONENTS FROM THE SPRING
AND NEAP TIDE RANGES AND THE TIDAL FORM NUMBER.

a¥aXaXs'

FM2a(ST+TNI/(4a%(1asFN))
$28(ST=TN)/lbae®lLe+FN})
FK1nFNSFM2

OlsFN®S2

TIDE LEVEL IS THE SUM OF THE FOUR MAJOR TIDAL COMPONENTS
AT EACH HOURe

[aNa¥a¥al

TIOX = FM2#COS(ARG/TM2) + S2#COS(ARG/TS2)+ FK1®COSIARG/TK1} «
1 Q1#COS{ARG/TOL)

BOTTOM SLOPE 1S COMPUTED FROM THE TIDE LEVELs AND THE SLOPE
AT HIGH AND LOW TIDES.

[aXaXa¥al

TLOC = (TIDX+§Tr24) 7 ST
SLOPE = SLBOT + TLOC # (SLTOP=S5LBOT!
TIDX=TIDX+TMEAN
RETURN
END
/7 DWP
#DELETE T10€
*STORE WS VA TIDE

7/ JOB SURF 3-86-001
/7 FOR
®#]0CSICARD»1132 PRINTER)
#ONE WORD INTEGERS
#LIST SOURCE PROGRAM
SUBROUTINE SURF ( SHANG sPERODSHE LG, SLOPE oHB s BRANG sVL S s DEP THsLSCOP |

COMPUTE BREAKER MEIGHTs ANGLE AND LONGSHORE CURRENT VELOCITY

nnn

Ple3.14189

RaDn57429%0

Ga980,62

HICMe 1004 #HELGT

HBCM= 383 8G#80,2# (PERODEHTCM®®2 ) 400 b
DEPTH=142#HBCM

WLORG/ (24 2P ] ) SPERODO®2

WL1swWlO

< DISPERSION EQUATION USED TO DETERMINE SHALLOW WATER WAVE LENGTH

0O 10 I=1s20
WLISWLO®TANH( 2, #P1#DEPTH/WLY)
10 CONTINVE

SNELL'S LAW USED TO DETERMINE BREAKER ANGLE AND HEIGHT
DUE YO WAVE REFRACTION.

[a¥aXaKal

SINA®SINISHANG/RAD ) ®TANM( 2+*P1 *DEPTH/WL])
COSA=SART (le=SINARS2)

CALL ARCTA(BANG»COSA»SINAY

ARANG=RAD®BANG
REFRCeSURT (COS {SHANG/RAD) 7COS (BANG) )
HB=REFRCOHBCM

OPTION OF FOUR DIFFERENT LONGSHORE CURRENT EWUATIONS.
GO TO (1e20304)9LSCOP
LONGOMHORE CURRENT = FOX AND DAVISy 1972

[aXa¥al [a¥a¥al

1 Vi 50100,%SLOPE®HB/PERODOSIN( 4 PBRANG/RAD)
GO 10 3

LONGSHORE CURRENT = LONGUET=HIGGINSs 1970

nnn

2 VLS » 9,0°SL0PESSQRTI Gend FRSIN{2.98RANG/RAD)
GO 10 8

LONGOMORE CURRENT = CoEoReCer 1973

nnNnn

3 VLS =20470SLOPE*SORT( Gonb 198 INC 2. *BRANG /RAD }
GO 109

LONGSHORE CURRENT = KOMAR AND [AMANs 1970

nnn

4 Gl1eG/100.
VL8e100.2G1oNEIGT 002/08,0G10PENAD/ (4,9P [ 10SIN( 2 #BRANG/RAD @
1 COB(2+°BRANG/RAD)
S MBenB/100.
RETURN
END
17 e
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SDELETE SURF
*STORE WS UA  SURF
// JoB ENRGY

17 P
*10CSICARDS1132 PRINTER)
®ONE WORD INTEGERS
SLIST SOURCE PROGRAM
SUBROUTINE ENRGY (HoToTIMEISALT €4 IUNIT)

<
< SUBROUTINE ENERGY [5 USED TO DETERMINE WAVI ENERGY DURING EACH
[ < HOWRe THIS ENERGY IS DERIVED FROM THE ENERGY WITHIN A SINGLE WAVE
g AND SUMED TO FIND THE TOTAL ENERGY IN THE STORMe
<
Cooe FIND NUMBER OF WAVES IN GIVEN TINE PERIOD
<
WAVESeTIME#3400./T7
<
g-.o FIND PROPER MASS OENSITY OF WATER (QeFRESHslaSALT)
IF(ISALYo€Qe0) DENSE®loe94
IFLISALT.EQe)) DENSE=2,0
IFLISALT.GTel) GO TO 800
<
ga-- CONVERT WAVE MEIGHT FROM METERS TO FEET
HTeH/003048
<
Ceeo FIND ENERGY FOR A SINGLE WAVE
<
¢ €o8, 120DENSESD2,10(HT*T)0e2,/8,

Ceee FIND TOTAL ENERGY
<
EsESWAVES
S... IF OUTPUT 1S DESIRED IN FT=LBS/FT+RETWURN

IFLIUNITSEQeD) RETURN
IF(JUNIT,NEe1) GO TO 500

[«
Ceee CONVERT FT=LBS/FT TO JOULES/METER
<

EeEe]1,35582/0,3048

RETURN

<
Cees ERROR CONDITION

4
300 WRITE(3+600)
600 FORMAT(1Xs ' ILLEGAL OPTION IN SUBROUTINE ENRGY')

RETURN
END
// OuP
#DELETE ENRGY
#STORE WS UA  ENRGY
7/ JOB ARCTA
// FOR

SONE WORD INTEGERS
*L1ST SOURCE PROGRAM
SUBROUTINE ARCTA(ANGLEsXsY)

3=86-001

3=86-001

ARCTANGENT RAQUTINE IS USED TO DETERMINE THE ANGLE FROM X AND Y

<
<
< COORDINATESs OR SIN AND COSINe
<

ANGLE = 040
IF(ABSIX)=e001)2+9+9
IF(X) 14343

IF(Y) #4345

ANGLE = 60283182%

GO 108

1 ANGLE = 3.,1415926
8 ANGLE * ANGLE*ATANIY/X)
RETURN

2 IF (ABS(Y)=e001) 8+10010
0 IFiYIesTe?
[ ]
?
L}

ru o

-

ANGLE=»4,7123889
RETYRN
ANGLE = 1.3707963
RETURN
END
1/ OWP
SDELETE ARCTA
*STORE WS UA  ARCTA




/7 JOB
/7 FOR
#10CS(CARDI 1132 PRINTERsTYPEWRITER+KEYBOARD)
®ONE WORD INTEGERS
COMMON UL130)+V(130)
DIMENSION TITLE(20)+DAY(S)
DIMENSION AL(2)9A20219A3(2)+A612)+8112)+82{2)9CL(2)+C212)4CR10)
DATA AL/Y KIL'o' NAU'/oA2/'0OMET ' o' TICA'/3A3/'ERS *s'tl Ml /y
1 Aes? $2'CES */eBlst MET' o' FEE'/eB2/%ERS *o'T7 e
2CL/70 JOUY e FOO'/0C2/°LES 'o'T PO'/eC3/? Yo 'UNDS '/

STORM PROGRAM LIMITED TO FORECAST MODE
TYPEWRITER INPUT FOR THE STORM PARAMETERS

CARD 1 = TITLE
CARD 2 = STARTING DATEs TIME AND INPUT=-OQUTPUT OPTIONS

COLSe 1=2 ISTRY= STARTING HOUR
COLSe 3=22 DAY = STARTING DATE

COLe 23 INAUT= [NPUT OPTION
0 = METRIC UNITS
1 = NAUTICAL MILES AND FEET

COLe 24 NAYT = OQUTPUT OPTION
1l = NAUT{CAL MILESs FEET AND KNOTS
Q = METRIC UNITS

CARD 3 - STORM PARAMETERS

COL. 2 TIDE PREDICTION OPTION
G = TIDE PREDICTION NOT INCLUDED = OMIT CARD &
1 = TIDE PREDICTION INCLUDED = SEE CARD &

COLe 3 LONGSHORE CURRENT EWQUATION OPTION
1 © FOX AND DAVISs 1972
2 = LONGUET=MIGGINSe 1970
3 = CoEeReCer 1973
4 u KOMAR AND INMAN: 1970

COLSs &=5 NX = NUMBER OF STORM POSITIONS
$1X HOUR INTERVALS FOR HINDCASTING
ONE HOYR INTERVALS FOR FORECASTING

COLSe 7-12 BNFCH= AVERAGE BASIN FETCM IN KMe (NAUT. M)
COLSe 13~17 TINT = T[ME INTERVAL BETWEEN STORM POSITIONS
NORMAL SETTING 1S 1.0 MOURS

COLSe 32-36 SLAT = LATITUDE AT SHORE SITE
CARD 4 = TIDE PREDICTION =~ OPTIQN FROM CARD 3

COLSe 0-5 ST = SPRING TIDE RANGE IN FEET

COLSs 6-10 TN = NEAP TIDE RANGE IN FEET

COLSe 1115 TDAY = NUMBER OF DAYS FROM LAST SPRING TIDE
COLSe 16-20 THR = HOUR OF LAST MIGH SPRING TIDE

COLSe 21-25 FN =~ TIDAL FORM NUMBER
0e0 TO «2%5 = SEMIDIURNAL TIDE
25 TO 1e5 = MIXED SEMIDIURNAL TIDE
1e5 1O 340 - MIXED DIURNAL TIOE
GREATER THAN 3.0 - DIURNAL TIDE

COLSs 26=32 SLPLO= NEARSMORE BOTTOM SLOPE AT LOW TIOt
COLSe 33=39 SLPMI= NEARSHORE BOTTOM SLOPE AT MWIGw TIOE
COLSe &0~66 TMEAN= MEAN TIDE LEVEL IN FEET

CARD & = SMORE SITE LOCATION

COLSe )=T WLOC = K=COORDINATE IN NAUTICAL MILES
COLSe B=14 VLOC = Y=COORDINATE IN NAUTICAL MILES
COLSs 15=21 SHMAZ = ONSHMORE DIRECTION - CLOCKwISE FROM NORTH
COLSe 22-28 SLOPE- AVERAGE NEARSHORE BOTTUM SLOUPE
COLe 30 ISLND= O = CONTINENTAL COAST OR BARRIER ISLAND

THE FOLLOWING INFORMATION IS TYPED IN FROM THE CONSOLE FOR EACM
STORM SIMULATION RUN.

PMIN = MINIMUM BAROMETRIC PRESSURE IN MILLIBARS
PMAXR= PRESSURE AT LARGEST ENCIRCLING [SOBAR

TYPeE AR - MAJOR NALF=AX]1S (EFFECYIVE LONG RADIVS!
SR = MINOR ~ALF=AX]S (EFFECTICE SMORT RADIUS!
in EAZ =~ ORIENTATION OF MAJOR MALF AKRIS PLUS OR

MINUS 90 DEGREES FROM NORTW.

ONNAONONONNNNNNNNNANNANANANNANDO NONANNDANNNONNNNANANNANNNANANANOANOANNDNNONNNAANNNANNANANANN NN

SVEL ~ STORM vELOCITY [N KNOTS
AZl = STORM A2iMUTH = CLOCKWISE FROM NOKTw
RE1) = INITIAL X=COORDINATE FOR THt STORM,
Y{ll = INITIAL Y=COORDINATE FOR THE STORM,

CNK=1,85319

CKA®e5396]

CFMs 3048

CMFe3,2808

CKTS=1.942%

CCMPre,0352808

CJOUL = 797981

9%




RAD=57.2958
8080 READ {2,915} TITLE
915 FORMAT (2044}
READ(Z2+917) ISTRTeDAY s INAUT oNAUT
917 FORMAT{]2+5A4021))
NNeNAUT+1
IFCINAUT) 14l
CNKe 1.0
CFMel,0
2 IFINAUT) 11411432
11 CkNsle0
CMP=le0
CKTS®1.0
CCMFel 40
CJOUL=140
12 1F (1STRTL,EQ.0.0} GO TO 1000
READI2+901 HINOPT 4 IFTIDoLSCOP oNX sBNFCLsTINToSLAY
901 FORMAT(311+13+F0e0eFB.101aXeFS%:11}
BAFCHeBNFC L #CNK
IFLIFTID) 54840
o READ(24929) S1sTLoTOAY I THRIFNeSLPLOISLPHIZTMEA]
920 FORMAT(5F5.2:3F7.2)
STe§ioCFM
TNeT1eCFM
TMEANSTMEA L ®CFM
9 READ(24907}) ULCIoVLCIsSHAZYSLOPE +1SLND
907 FORMAT (aF7,0452)
ULC1=ULCL®CNK
viClevLCloCONK
965 WRITE(Le9T)
947 FORMATL! TYPE (N THE MINUMUM AND MAXIMUM BAROMETRIC PRESSURE IN Ml
ILLIBARS = FORMAT AAAA.BBBB.')
READ(62948) PMINIPMAXR
948 FORMAT(2F3.,0)
WRITE(1+95%)
955 FORMATI* TYPE IN THE LENGTM OF THE MAJOR AND MINOR WALF AXES OF TH
1€ STORM = FORMAT XXXXKaYYYY, ')
READI{G+956) AR} +BRIL
9%6 FORMAT(2F9.0)
wWRITE(1,960)
960 FORMAT(' TYPE IN TrnE ORIENTATION OF THE MAJOR WALF AXIS IN DEGREES
1 FROM NORTH = FORMAT XXX¢'}
READ(6+9611 EAZ
961 FORMAT(FS.0)

-

BAROMETRIC PRESSURE AT LARGEST ENCIRCLING 1SOBAR IS ASSUMED TO BE
AT TWwO STANDARD DEVIATIONS FROM THE CENTER OF THE STORM, TO

FIND TME ACTUAL STORM SIZEs THE MAJOR AND MINOR AXES ARE
MULTIPLIED BY 149 AND THE MAXIMUM PRESSURE 1S MULTIPLIED BY

leled TO DETERMINE THE PRESSURE AT THE MARGIN OF THE STORM,

[a¥a¥a¥aXa¥a¥al

ARSARI®CNK

BReBR] *CNK
RANGPaPMAXR=PMIN
PMAXSRANGP® ], 165+PMIN

AR AND B8R ARE RADI1 OF THE STORM QUT TO TwO STANDARD DEVIATIONSess
MULTIPLY BY 145 TO YIELD TWE FuLlL LENGTHS.

[aXaXa¥a)

Aml,9®AR
Bul,590R
CALL FOREC INXsAsSVELGAZIL}
DO 42 [elonx
VilleutlreCNk
42 Vil)svi|)eCNK
ULOCeULCL /A
VLOCeVLCL/A
U1sUi1194¢,00%
Visvil)ea+,00%
ULsuLOCea
vVieVLOCeA

WRITE SHORE AND TIDE DATA

laXaXa)

UL1=UL®CKN®e 05
VLIeVLE®CKN*:0S
BNFC L =BNFCHeCKN
WRITE+34916) TITLE
916 FORMAT(1HL//s1Xv20A4/}
WRITE(D 49101 1STRT DAY
918 PORMAT(IX+'AUN BEGINS AT MOUR '+12¢' ON *o5A8)
WAITEI3:909 ! PMINIPMAXR PMAK
905 POAMAT(1MO¢'STORM ~ BAROMETRIC PRESSURE AT CENTER OF LOm o' yFfT.ls
1' MILLIGARS' /92 ¢ 'PRESSURE AT LARGEST ENCIRCLING 1SOBAR ®'oF7,],
2° MILLIGARS' /9, 'MAK[MUM PRESSURE INCLUDED IN STORM st sFTals
3 MILLIBARS' /)
ARJeARSCRN+:Q)
[ 13} (£ 147:1]
WRITE( 309261 ARLoAL (NN cA2INNI sADINN) sAGINN) ¢BR1IsALINN) cAZINNT
1 ABINNIJAGINN) +EAL
926 FORMAT(OX s 'LENGTH OF MAJOR WALF AXIS =' +F 7.1 v0Ab/
19Xe'LENGT™ OF MINOR WALF AK1S o' FT,l00A0/
29X 'ORTENTATION OF WMAJOR ARIS »'sF7.10' DEGREES FROM NORTH'/)
1P INAUTIS0L s001 0002
601 wRITECD.910) SVELAZ!
910 FORMAT I OX+'STORM VELOCITY ot oFae0s' KILOMETENS/HOUR' ¢
1 ORe'STORM A2I1MUTM o' sFae0/)
G0 10 #0S
602 WRITE 9,911 SvELeAll
P11 FORMAT oR,*STORM VELCCITY ot oFae0e' KNOTS',
1 N STORM AZIMUTH o' Pasd/)
#0% CONTinUE




N

WRITE{30970 ULLsVLLoALINNDI sAZINNI sAIINN) 1AL (NN ¢SLAT 9 SHAZ s SLOPE »
1 BNFCLsALINN) sA2(NN) s A3 (NN) s A& (NN)
970 FORMAT{' SHMORE = POSITION COORDINATES = X s!sFT7ele® Y =2'4F74l»
1 4AN J/9K'SHORE LATITUDE w'oF6e0s! ONSHORE AZIMUTH
2 »'sF6e00" DEGREES'/9X+'NEARSHORE SLOPE st 9Fbe3»! AVERAGE FETCH
3 u) s Fbe0 AL/}
IFUIFTIO) 59459458
88 SleSTeCMF
T1aTNSCMF
WRITE(3+927) S19TLeBLINNIoB2INN) +SLPLOSLPHI

927 FORMAT(® TIDES = SPRING TIDE RANGE ='¢F6.2+' NEAP TIDE RANGE ='s
1F84292A4 /9%X+ 'SLOPE AT LOW TIDE ='sF6e3+% SLOPE AT HIGH TIDE
1 ='eF643/1

IF{FNGLEe+25) WRITE(34941) FN

941 FORMAT(9X+'SEMIDIURNAL TIDE - FORM NUMBER [S'sF6e2/)
IF{FNeGTea25¢ANDeFNeLECLeS5) WRITE(34942) FN

942 FORMAT{9X+*MIXED SEMIDIURNAL TIDE =~ FORM NUMBER 18'sF642/)
IFIFNeGTale5¢ANDFNeLE«3e0) WRITEI34943}) FN

943 FORMAT(9X+*MIXED ODIURNAL TIDE ~ FORM NUMBER IS'eF6.2/)
IF(FNeGT43e0) WRITE(34944) FN

9446 FORMAT(9X,'DIURNAL TIDE = FORM NUMBER [5'sF6.2/)

59 WRITE(14+830)

830 FORMAT(' PLEASE CHECK TO SEE TMAT TrE INFORMATION ON THE PRINTER 1
15 CORRECT' / ' IF THE PROGRAM 1S ALL SET TO GOs PRESS THE ) KEY. O
2THERWISE. PRESS THE 2 KEY')

READ(69831) NNN

831 FORMAT(11)

IFINNN=]1) 5903590,945

590 WRITE(34500)

500 FORMAT (1MOe* HOUR' sT110'X*'sT1B8e’'Y ' oT24e"X1'9T31s'Y1*sT374'BARO."
1TAS s 'WIND ' o TS24 'SURF o' 4 T59+"ONSH s TE6» FALSH s TT20 'EFFLCT s T81y
2'WAVE ' 2 TBO ¢ *WAVE ' +T98 ¢ 'BREAKER' 9 T10941LSC s/ o L1XeT369 'FRESSe 2 Taus
BUANGLE* oTS520 ' WIND' ¢ T590 ' WIND o TOE» 'WIND s TT34 ' WIND teTRIy't'eTOU
LT oTOTo "M 'oT10L e "ANGLE ' #T108+'VELOC, ")

IFCIFTIDGT40) WRITE(3+951)

951 FORMAT(1H+T117,'TIDE")

IF(NAUT! 800,800,809

800 WRITE (3,801

801 FORMAT{1MOsT10s KM  oT1 7o KM 21 T24 0 'RAD sT31+*RAD'+T30+"'MB' TS5
1 'DEG* o753+ M/S 2 T60s ' M/S oTOTo ' M/S e TTLstM/S5 sTBI "M 4 TBI ' SEC!

2 oT9To M 3 T102+'DEG’+T1084'CM/SECT?
IFLIFTIDeGT0) WRITE( 348020
802 FORMAT(1H+sT1184'M*)
Go TO 815

809 WRITE(3+820)

820 FORMAT{IMOsTIOs'NM sT179s 'NM'oT243'RAD sT31+'RAD ' oT38+'MB sTuby
1 'DEG #7035 'KTS 01600 ' KTS ' sTET s 'KTS s TTas'KTS s TBZo'FT s 7RO ' SEC"
2 2196+ 'FT ' 4T102+'DEG*»T108'FT/SEC')

IFUIFTID«GT.0) WRITE(34822)

822 FORMAT{1M++T128:'FT")

815 WRITE(3+952)

952 FORMAT (10x1}

4
< CALL SUBROUTINES TO DETERMINL LOCATION AND COMPUTE wWIND» wWAVES,
< AND TIDES AT EACH LOCATION
[
DO 50 l=losNX
CALL LOCAT(ULTIIaVIT)oULOCeVLOCISHAZ v X oY oEAZ 9P Q)
CALL ELIPS(AIBIP IR PMINIPMAXPIIERADIXAPYAIDZA)
CALL WIND(XsYsPoPMINePPAKSLAT yWSURF ¢ALSHIONSH s SHANGeERAD Pl oA s XA»
1YAsSHAZ+EAZ+sD2A+ ISLNDEFWND)
IF(14EQs1) GO YO 510
CALL DECAYITINT+PERODMEIGT)
HDECYsMEIGY
CALL ETIME(EFWND+HEIGT o TINT DRATNI
GO YO 520
510 DRATNeTINTY
ESUMB040
EN®O.0
EPeQ.0
IMOURe [STRT
920 CALL FETCH(ASBsXoYeSTFCH)
TLFCHeSTFCH

IFIBNFCHoLToSTFCH) TLFCHOBNFCH
CALL WAVES(EFWNDsDRATNS TLFCHIEFETCIHEIGT ¢PEROD L)
IF(LFTIO) 56056059
88 CALL TIDE(SToTNsFNeISTRTTHRITOAY sTIORoSLPMT +SLPLOSSLOPE 41 s TMEAN?
86 CALL SURF({SHANGIPERODMHE1GT sSLOPE 1 HBIBRANG VLS +DEPTHLSCOP)
IFIBRANG=180.7 4944948
Y} BRANG=BRANG=3604
(3] CONT INVE

< COMPUTE WAVE AND LONGSHORE CURRENT ENERGY

ELS® 202370 (0.60VLS 1802, CDEPTHOO2,/SLOPE
IFLVLS) a3sb8ea?
3 ENSENCELS
GO TO oe
a7 EPeEPHELS
L1 CONTINVE
CALL ENRGYIMBsPERODITINT 1 4Es1)
ESUMSESUMSE
UPTsyl ] 18ASCKNeS
VPTeVi [ )SASCKN+ S
WERFeWSURF ¢CK TS
ONCONSHOCKTS
ALSALSHOCKTS
EF«EFWNDOCKTS
HTlanEIGTOCMF
LI L LId 4
v1svLSOCINF
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WRITE(3+530) [HOURWUPToVPT oXsY,P
1 HB1+BRANG V] sP s SHANG s WSRF sONs AL +EF 4 HT] s PEROD s

930  FORMATU3X012+2FT+0e2FT42+F8.144FT41+F7

IFCIFTIDLGT<0) WRITE(3+531) T1px 11FTe14FBe29FTo1sF742+2F7.1)

FORMAT (1M++114XsF542)

IHOUR= [HOUR+IFIX(TINT)

IFUIHOURGGTe26) IHOURS JHOUR=24

CONTINVE

ELSCTSEN+EP

ESUMSE SUM#CJOUL

ELSCT=ELSCT®CJOUL

EP=EP*CJOUL

ENSEN®CJOUL

WRITE(34540) ESUMsCLINN) sCZINN) 9C3INN) sELSCToCLINNY 9C2(NN) »C3INN)

560 FORMAT (1Xs//+1XsT5'WAVE ENERGY IN THE BREAKER ZONE s'sE10e303Abs//
1o11X0T5, TOTAL LONG=SHORE CURRENT ENERGY ®'E10e3+3A4s/)

WRITE{34562) EPsCLUNN) oC2UNND »C3{NN) sENsCLINN) +CZINNY s C3 INN)

542 FORMAT (1XsT5¢'TOTAL POSITIVE LONG-SHORE CURRENT ENERGY ®*.E10e3s
13A497/01X+T5s ' TOTAL NEGATIVE LONGSHORE CURRENT ENERGY «'+E1043)
23A6)

WRITE(34992)

992 FORMAT (1M1)

WRITE(1+990})

990 FORMAT(* [F YOU WANT TO TRY ANOTHER SIMULATION RUNs TYPE [N A 1»

10THERWISE TYPE IN A ZERO')
READ(6+991) NEND

991 FORMAT(I1}

IF(NENDeEUsl] GO TO 45

-

o

GO TO 8060
1000 CALL EXIT
END
/¢ OWP
*DELETE CSTRM
*STORE WS UA  CSTRM
/7 J4CB -8~
e Fom FOREC 3-86-001

*JOCSI{CARD+1132 PRINTERITYPEWR]ITERSKEYBOARD)
#ONE wORD [INTEGERS
*LIST SOURCE PROGRAM
®LIST SOURCE PROGRAM
SUBROUTINE FOREC(NXAPSVELIAZ])
COMMON U(130)sV(130)

[
[« FORECASTING = COMPUTE STORM POSITIONS FROM INITIAL POSITIONs
< VELOCITY AND AZIMUTH
4
TINV2140
RAD=57,2958

WRITE{1+975)
9751:0RMAY(' TYPE IN THE STORM VELOCITY AND AZIMUTH = FORMAT VVVeAAAL!
READI61976) SVELsAZL
976 FORMAT(2F440Q)
WRITE(1,970)
970 FCRMAT(' TYPE IN THE INITIAL X AND Y COORDINATES OF THE STORM =
1 FORMAT XXXKsYYYYy ')
READ(64+971) Wil)evil)
FORMAT(2F5401
Utli«u(l)/A
villavili/a
DIST=SVELSTINT/A
AZM=90,=A2]
IFLAZM) 31432432
31 AIMeAZM+360.
32 DO 35 =2,NX
U)oy (1=1)1eD]IST2COS (AZM/RAD)
VII)Isv(]=114DISTHSINIAZM/RAD)
CONTINVE
RETURN
END
1/ DUP
SDELETE FOREC
*STORE WS UA  FOREC
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APPENDIX B. HINDCASY STORM DATA AND OUTRUT
MAGDALEN 15LANDS = EAST SIDE
NOVEMBER 264 1974 00 )
OATA LIST FOR MINOCAST EXAMPLES LR C1e0 974, 1008, 8. 860s 860, 0.0 '
L8 37 10s 21el 5:0 04020 0.030 ok \
STEVENSVILLEs MICHIGAN 1665, 1110. 2704 e026 1
20JULY 260 1969 [ . Tise ubs f
101 15200« 140 994 10124 62¢ 960 700s 30s 1310 ses
1043, 86,  90s 033 less 966
333 1229 1550 1156
are 960 1507 1221 3
723 n1 1643 1188
826 od3 1763 1274 :
328 666 l8%% 135 3
1026 beb 1943 1543
1178 678 2202 1920 4
1280 T49 PLUM ISLAND» MASSACHUSETTS .
1408 91% 1 APRIL 4+ 1975
1510 1050 111 134000, 1e0 982  1012s 424 1200e 600« 15
1887 1190 3050 2010 Ta  Os  sli s0l6 2032 1.2%
1696 1325 1980 a3k 288 #9030
1713 la9e 11 139
1843 leS1 510 958
1907 1830 1091 810
HOLLANDs MICHIGAN 1258 906
1JULY 3e 3970 10 120 117
101 10 150. 1s0 1003. 1010 42+ 550s 200  30. 1850 925 b
1015 560 90 +032 161 925
968 1030 2072 888 4
1066 949 2090 996 3
1098 843 2202 928 :
1102 781 $350 717
1163 709 2479 666
1216 692 2720 %92 )
12711 86 3100  5%0 »
13136 3500 500 :
1362 e8e CEDAR 1SLANDe VIRGINIA 5
1401 692 TJULY 14y 1973
HOLLAND) M1CHIGAN 1131348000 100 1010. 1016s 38. TeBe 224 <5
1JULY 7e 1970 10 1e72 +90 16e 18s 440 <035 <039 5% <
101 13 130 1e0 1002s 1010+ 42, 55¢ 264 35 3281 1537 285 4037 r
1015 %60 90 4033 195 se8 f
432 99 542 Bb4
888 gu8 932 1118
751 913 1323 1323 ;
886 845 1758 1512 .
1027 790 1922 187
1102 099 2085 1436
13 687 2243 1386
s 624 2419 1399
1190 603 2552 1613
1245 601 2621 181k
1297 627 2686 2068
1339 1} 2118 2269
1334 SAPELO 1SLANDs GEORGIA
HOLLANDs MICHIGAN LFEBUARY lés 1969 00
13JuLYs 180 1970 i0 113 12 3000.1s 990,  101Z. 3. 925e 9254 O
101 12 130. 140 1004. 1012e 42s 53%0. 300,  28. aak 1483 1l 9e <12 s013  e018  1eL2 A
lol> 560 90 .03 1575, 525+ 290 4UI3S
796 708 819 w08
832 699 934 385
871 889 1065 373
9% 686 1207 373 3
1016 666 1386 402
1095 650 1egs  «20
1160 643 Je1l 12
1196 663 1727 829 !
1300 88 Lez6 881 »
1271 735 1890 632
1443 ale 1962 679 E
1967 982 2000 702 .
SNEBOYGAN, WISCONSIN MUSTANG JSLANDs TEXAS
THLY 13, 1972 TIANUARY L2s 18972 00 .
101 9 2000 1e0 990. 1008 424 1750. 875, 23 et 500s 1e0 9L, 1C18. 284 2500 Uy Z5e J
1892 1112 270s <030 L85 430 les 1beb 2+5 4016 027 w2t &
583 179 2615, 0.0  280s W018 :
800 1788 2381 1993 3
1053 1788 2716 1938 ]
1262 1800 2084 539
1669 1839 3216 1555
1686 1976 3401 leud 3
1794 2087 3res 167
2210 EAER] 1660
W 2336 «0c3 1187
SHEBOYGAN: WISCONSIN enss 1m0l
TJULY 16 1972 o w810 1835
101 31 200, 1.0 1002. 10164 2. 1050. 700.  20¢ WUSTANG 1SLANDs TEAAS
1892 1112 270, 2030 ToANUARY 230 i¥12 vg
ite 208 117 9 100Cs leg 99Ba iiiba  28.  1BO0s BUL, 33e ;
390 33 254 1teb 205 eCl6  #u20  a2e
598 uic 28Ce  eu18
793 a9 831
101y 637 a1l
1387 9a? Boe
1593 198 1o
1093 187 s
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2080 2263 ¥
2191 2518 [t
SMEBOYGAN. WISCONSIN Jeat 9%
TAUGUST 1y 1972 0 MGNTEREYs CALIFURNIA
301 9 200s 140 1002¢ 1012e #2s 1400e 430, 12 WFEBUARY 13 1987 su
1892 1112 270 +030 112 5 8U29 i LALR 19:2¢ 37, TO0s 3%U,  Sue
498 19l 2007 wef: Ba 1% levi eubt  40%F  leu®
643 1203 MiTe  BIle 12ue eiS?
1027 182% wws 1238
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1345 1860 L1681tz
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1930 1400 iebc 87 B
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ze26 2203 P ey
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113 30 200¢ 140 9760 1008, oB, 880, 88D¢ Ul Lt REALe IMELLN
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HULLANDs MICHIGAN
RUN BEGINS AT HOUR 1 UN JULY 39 1970
STCRM - BAROMETRIC PRESSURE AT CENTER OF LOW » 100340 MILLIBARS

PRESSURE AT LARGEST ENCIRCLING I1SOBAR = 1010+0 MILLIBARS
- MAXIMUM PRESSURE INCLUDED IN STORM = 1011ed MILLIBARS

LENGTH OF MAJOR MHALF AX1S = 55040 KILOMETERS
N LENGTH OF MINOR WALF AXIS = 200.0 KILOMETERS
ORLENTATIUN OF MAJUJR AXIS = 30.0 DEGREES FROM NORTH
LONGSHORE CWRRENT EWUATION FROM FOX AND DAYVISe 1872
SHORE = POSITION COORDINATES = X = 101540 Y = 56040 KILOMETERS

SHORE LATITUDE = “Ze ONSHORE A2IMUTH = 93¢ DEGREES
NEARSHMORE SLOPE = 0.032 AVEKAGE FETCH = 150« KILOMETERS

HOUR X A\ X1 Yl BARO,. wIND SURF.  UNu 4 ALSH  EFFECT. wAVE wAvE BREAKER ~5C
PRESSs ANGLE wiND #1ND winND WIND n | L] ANGLE  VELUC,
KM KM RAD RAD M8 CEo M/S M/S MsS M/S L] SEC L +11¢) M/ 56 ¢

1 968, 1030, 0456 040% 1010.98 210.9 Qo2 =04l Vet 0.00 Vel 0e00 =l4e9 =0.9«
2 984, 1016, 0455 0.03 1010.95 211.9 Qeb =042 Cel 0400 Osl 0+00 =157 =lasbs
3 1001. 1003, 0453 0,01 1010.89 213,) 0.7 “043 0.2 0e00 QOel 0e00 =1b6e¢5 =3.24
4 1017. 989, 052 =0,00 1010479 21445 1.2 =Usb e Q00 Qe2 000 =17.3 =223
5 1933, 976, 0450 =0402 1010463 216.3 1.8 =1l Qe? Q.01 Jele VeOl <1842 =7.85
6 1050, 962, 0468 =0Ce04 1013440 21845 246 “l4 1.0 Gel2 Ued Ge0)  =19ed ~11403
7 1066, 969 Jae? =0,06 1010408 22143 3.6 =224 1.5 UeU3 Ce? 0s03 =c04% ~ikedy
4 1071, 932, Ose5 =0.06 1009475 222.8 Lot =340 18 Qe 05 Oe¥ 0e0S =2iel =1T7e77
9 1077. 9les Qet2 =~0407 1009436 22446 Sed =346 fec Oa? 1a0 Qe06 =2149 =20e8.
10 1082, 897 Usb0 =0.08 10G8.91 226.9 5.9 =443 rey) Qe0% lee UelB =cloeB =234
11 1087. 880, 0438 -0.08 100841 229.7 Gats 4.9 2.9 Gele Lok CVell =23.9 -25.68
12 1093, 862, 0436 <~0.09 1007.87 2334 67 =544 3.1 0eld le5 Qal2 =25.2 =2i64BY
13 1098, 845, Qo34 =0,10 1007431 238.4 68 =58 3.3 Qel? let Velh =26.% =260061
Y4 1099. 828, Ve32 =0,10 1006486 242.,0 67 =59 EXL) Qeld¥ 1e7 Qeld =27.9 =26s1¢
1z 1099, 810, 0420 =0,10 1006637 24646 645 =640 345 Ce2l le8 Celd =29l =2443%

=640 3.6 Q.23 1.9 Vslé =3043 =21400

16 1103, 193, Qs28 =0410 1005492 252.6 63
=640 347 Qe25 20 Osll =3led =15420

17 1101, 176, 0426 =0410 130549 260.7 6l

18 1iol. 158, Os24 =040 1005410 2Tl LTRY =641 el Ced? rERs Ve05 =32.0 =-6427
19 ilc2. Tale 021 =0410 1004476 284,43 6l “549 “ob Qedl 282 Gel? =30e9 ~21e74
20 1112, 136, Ge21 <=0Gell 1006070 306.2 b0 =448 542 Ue36 23k 0e30 =254 ~4le51
21 il22. 730, Je20 =Celd 1004472 33044 642 =340 5.9 Vb2 o6 Velkd =192 =aTe24
<2 1132, 725, Ce20 «lel4 1004483 350.0 Te2 =ls2 7.2 Qe52 cob VebS =5e¢3 =22092
23 1leld. 120, 0e19 =~0e1% 100%5.02 3.1 87 Oele Ba7 Qeb7 3ed Cs70 let Bedd
24 1133, Tlas 0.18 =-0.16 1005+28 117 1062 240 i0el Qe85 3.6 Qedt bed Blsly
1 1163, 709, Osi8 =0417 1005e61 175 115 345 liet 1405 “ed 1408 9e3 53471
e 1172, 7064 Gel? =Qel¥ 100593 2048 1244 ol 1é4) 1025 bk 127 10e9 6ée32
3 1181, 703, 0el?7 =0s20 1006427 2343 13.0 el 12.7 lew3 we? Lowd 1262 7607
b 1189, 700, 0el7 =021 1006463 2%.3 13¢4 S5e7 13.0 1.60 540 lab2 13¢2 85407
5 1lisa. 698 Oelo =0.22 1007.00 2649 1345 6l 1340 leTé 5e2 1e75 l4e0 9lebu
& 1207, 695 O.16 =0423 1007436 28.2 135 6l 12459 186 S5e4 1e87 lheb 97ev17
T 121s. 692, 0s16 =0Q+24 1007.72 294 13.2 bels l2eb l.9¢6 5e¢5 1495 15¢1 10le0w
8 122%. €91 Oel5 =Qe2% 1008.08 3042 1267 beb 1241 2402 5e6 2401 155 103062
9 1234, 6904 0si5 =0426 1008441 30.9 12.0 LYY 11.9 24006 Se7 2e04 1548 105425
10 1243, 689, OelS =027 100872 315 11e3 29 20e7 192 5¢5 1s90 16ei 102431
11 1233, 688, Osi% =0428 1009.01 32.0 1045 S G le?2 Sed 1e70 loed 97.18
12 1262, 587, 0e15 =0429 1009428 32.% 946 54l Gel 1450 49 leu8 16«5 91436
13 1271, 686, 0,15 =0.31 1009453 32.9 8.7 “wel bed 1.29 495 le28 l6s7 85.00
14 1278, 686 0sl3 =-0e31 1009470 3342 8.0 bou 7.6 lelt bed lele loed 19490
1% 128%, 685 0s15 =0.32 1009486 33.5 Te3 440 6.9 Je99 “s 0 Ve9B 1649 7463
b 1292, 685, Osl5 =033 1010400 33.7 67 3.7 6.3 Qe85 3.7 Cebd 170 oY¥e2%
17 1299, 684, Oel5 =0.34 1010413 34,0 6.0 343 Se7 Ge2 deb vell 17el e3sb2
18 1306, (11N Qs14 =0435 1010.24 3642 Sets 340 Sal Qebl 3ai Geb0 17e1 98437
19 1313, 683, Oslts =0o36 1010435 3beb b8 247 seb Qe50 2e9 Ve 172 52498
20 1321, €84, Oelt =0437 1010445 3445 “s2 2e4 beu Qete0 206 Vedy 17e¢  4Ts0n
21 1329, 884 Oal% =038 1010454 3447 3.7 241 3.6 0+31 243 Qell 17+1 4la32
22 1337, 110 Jel5 =0.39% 1010462 34,8 3.1 1.8 3.0 Oe26 2ol Va3 1Tel 3590
23 1348, 685 Celd =Coe40 1010469 34,9 247 1e5 Zob Qslt le7 ueid L7e0 30486
6 1354, $86. Osl% =0eul 1010479 35,1 243 le3 2ol Je13 1a5 Jell 1740 20419
1 1362, 686, 0415 =Qe2 1010479 3542 1¢8 lel 1.8 Qei¥ lel LelY 1649 22400
2 1le9. 687, O0el5 =D.42 1010483 3%.2 1s7 09 leb Qau? led Va7 leeb  19ei0
3 1378, 688, 0a15 =04432 1010.85 35,3 lebs Q.8 13 Ja03 le0 Ge05 167 lGe4s
s 1382, 489, Oeld <=Csbe J210.88 35.4 le2 Q4 lel 0e06 QeB Qe04 lesb  jueis
3 1388, 690, Gald <=Coes5 1010.90 35.4 1.0 Ce6 1s0 Je02 Je T U3 16e0 1de08
& 1398, (340 0el5 =0u65 10j0s92 354% Q.9 Qo5 Qa8 0.02 Veb VeGd 16e5 1Ue27
T 1401, 6924 Cel6 <0446 1010493 35.5 Qa7 Qeb Dt 0s7 0eQ1 Qed Gell leete ge069

WAVE ENERGY [N THE BREAKER ZONE « 041%3E 10 JOULES
TOTAL LONG=SHORE CURRENT ENERGY » 04)57E JO JOUULES
TOTAL POSITIVE LONG=SHORE CURRENT ENERGY » 0,1%6E (0 _JULES

TOTAL NEGATIVE LONG-SHORE CURRENT ENERGY = Ul438: 07 JOULES
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» MICHICAN

IN3 AT HUOUR 1 ON JUuLY 7, 1970

BARUMETRIC PRESSURE AT CENTER OF LUW = 100240 MILLIBARS
PRESSURE AT LANGEST ENCIRCLING JSOBAR = 101040 MILLIBARS
MAXIMUM PRESSURE INCLUDED !N STORM = 10l1lel MILLIBARS
LENGTH OF MAJOR HALF AX[S5 = 455.0 KILOMETERS

LENGTH OF MINOR HALF AXIS = 24440 KIL.OMETERS
ORIENTATION OF MAJUR AX]S = 3540 DEGREES FRUM NORTH
LONGSHURE CURRENT EUUATTON FRUM FOX AND DAVIS. 1972

POSITION COORDINATES ~ X = 101540 Y = 56040 KILOMETERS

SHORE LATITUDE = 424 ONSHORE AZIMUTH 90« DEGREES

NEARSHORE SLOPE = 0.033 AVERAGE FETCH ®  150s KILUMETERS

X ¥ %1 Yl BARU. wWiND SURF, ONSH
PRESSs  ANGLE wWIND WIND

KM (1] RAD RAD Mg DEG M/S M/§

452, 949, 056 082 1011415 1938 0.0 =0.0
“7% 949 0456 0479 1011515 193,9 040 =0.C
“97e G499, Ded0 0475 1012415 19403 Qed =0.0
520, 948, [re-11 0472 101115 19&,6 0.0 =040
5434 a8, Je56 0469 1011,15 195.0 00 =Q0.0
565 Fuda Gebe Oeb5 1011615 195.4 040 =0.0
5884 Fade Oe56 Ceb2 1011415 195.8 G0 =040
6154 942, Qe55 0s58 1011415 19642 00 =0.0
662¢  93bs 0455  Oe56 1011+15 196.7 040 =0.0
669e  930s Qo564 0450 1011615 19742 0e0  =D.0
6976 9256  Us53  Oe4b (011415 19748 0e0 =040
T24e 9194 052 0442 1011415 19544 040 =040
751e  913s  Ge51 3438 1011elé 1991 9¢l  =0el

ALSH
WIND

773, 902« 050 0e35 1011412 199,86 042 ~0s1 =040
795 8904 Qebd 0432 101109 200.2 043 =043 =04l

817, 879. Debo D+28 1011403 20048 Vet =045

840 868, [FR% ) Oe25 1010496 201.6 le0 -0,9
662 856, Qe43 Ced2 1010,79 20245 1.5 =let
B84 Baba Okl Oel® 1010457 203.6 202 =201
908 8364 040 0415 1010.27 2v%.2 342 =249

932, 827, Q439 0412 1C09.85 2v7,2 “e2 3.8
955 817, Ue3? 0¢08 1009,32 209.7 See =647
979 808 Oe36 Us05 1008467 2131 615 ~Sels

003, 7994 Je3s 00l 1007.94 21748 T2 =5.8 =455
027, 7904 Se33 =0.01 1007417 226.4 T8 =546 =545
039 775 Va3l =0e03 1006s43 229.5 8.0 =542 “6al
G52 Te0. Je29 =0405 1005470 236,86 Ty =43 =66
[o1. T Thbe 0427 ~0407 1005403 2604t Te8 =249 =58
077, 729 Oe24 =009 1004e46 261.0 Tet =lel =743
Q89 Tla. 0e22 =~0410 1004402 279,3 8.0 le3 =749
102, 699 3020 =0el2 1203.74 298.9 - “.0 =73
107 6924 0s19 =0Dal3 1003467 30845 8,2 Sel ~oek
112. 685, 0e18 =0ele 1003.03 318.5 842 6.1 9t
1174 678, Osl] =0slb 1003.62 328,3 Bys 7.1 o gls
121 671, Oelt =0415 1003465 337.3 8.7 dal =33

126 664, Oel% «0elb 1003471 365.4 93 9.0 ~de3
131. €57, Qeis =0sl6 1003.80 352,.3 9.9 9.8 ~1le3
134, 6524 Qel3 =0,i7 1JU03.68 356,.8 1344 10es -Ue5

138 64b, Oel2 =0417 1003.98 C.8 10.9 10,9
laie 64Ca Vell =0418 1004410 “el 11.5 1l
lébe 635, 0¢10 =0418 1004.23 T3 12.0 11.9
148 8294 0610 =0419 1004e37 10.0 12,4 1243
151 6244 ve09 ~0e19 1004453 1245 1249 lieb
157, 621, 0e08 =0e20 1004080 16,3 13,6 12.9
16we 6ld. Ge08 =0421 1005408 15.9 13,7 1342
170. bl4, 0407 =0422 1005436 17.3 14,0 13,4
177« 6ile Ue07 ~0423 100569 18.% le,2 13,4
183, 608, Qed? =024 1005495 19.8 l4e2 1340
190 605, Os06 =0e2%5 1006425 2046 14,2 13.3
199 8J4, 0s06 =Je26 1006461 211 14,0 13.1
208 LB 0e086 ~Ce2B 1006498 21,8 13,7 1ée7
217 503, GeQ6 =~0e29 1007433 2240 13.3 12.3
227, [ 1 r 0s06 =~0431 1007467 2246 1248 11.8
236 6024 Ue0& =332 1007.99 2247 1202 11.3

12656 601, 0e06 =0e33 1008430 2340 1leo 1047

256 635, Ge06 =036 1008.5%3 2247 11.C 1042
262 610, 007 =0436 1008474 2243 1049 9.7

1271 bla, Ve07 ~0437 1008495 22.0 9.9 92
128C. 618, Ge08 =0e38 1009416 2147 9e3 847
1288 ©23, Je09 =0440 1009432 2145 8.7 8l
297, 627, 0eQ9 =044l 1009450 2142 8,42 Tet
1304 630, O¢lC =0442 1009.064 210 Te? Te2
1311, 84, 0¢10 =0s43 1009476 2048 Te2 6.7
1318, 637, Uell =044 1009.88 2047 6.8 643
1325, 640, VUell =0,45 101000 2045 643 5.9
1332. bbb, Cel2 «0448 1010410 2042 5.9 5¢5
1339. e, Oel2 =0,47 1010420 20.2 Seé %l
1367, 650, Qel3d =04%B 101043C <041 5.0 “a?

2] 13%. 6%, Celd =0e49 1010440 2040 dad “a3
22 136l 656, Ceso =Ca50 1010448 19.8 “ed 3.9
23 1369, 660, Osle =081 1010456 19.7 3.8 Jeb
26 1376 663, 0al15 ~=CGa%2 1010063 19.¢ Jew e
I 1384 b6t Jels =Ce56 101Ja69 1946 ERR} Lol

wAvE ENERGY IN THt BREARER 20ONE = Jet]TE 10 JOULES

TOTAL LONG=SHORE CUXRENT ENENGY & 00,0730 10 JOWLES
TOTAL POSITIVE (Chu=nmMOnE CURREANT ENERGY = Ja26%E 10 JOULES

TOGTAL NEGATIVE LOMG=5HORE CUQRENT ENERGY = 0.6376 08 LOULFS
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HOLLANDs MICHIGAN
RUN BEGINS AT MOUR 13 ON JULYs 18y 1970
STORM = BAROMETRIC PRESSYRE AT CENTER OF LOW « 100440 MILLIBARS
PRESSURE AT LARGEST ENCIRCLING ISOBAR = 101240 MILLIBARS
L MAXIMUM PRESSURE INCLUDED 1N STORM = 1013.1 MILLIBARS
LENGTH OF MAJOR HALF AxlS s 55040 KILOMETERS
LE“GTH WF MINOR WALF ARIS » 300.0 KILOMETERS
CKIENTATION OF MAJOR ARIS * 28,0 DEGREES FRCM NORTH
LONGSHOHE CuUNRENT LUIATION FROM FOX AND DAVSs 1972
SHORE = POSITION COORDINATES = X = 101540 Y = 56040 KILOMETERS
SHCRE LATITUDE » b2 ONSHORE AZIMUTH » 90« DEGREES
NEARSRUKL SLOPL = Q4033 AVERAGE FETCH » 150. KILOMETERS
HOUR x Y X1 Y1 BAROs WIND  SURFe ONSH  ALSH EFFECT. wAVE  WAVE BREAKER (R 14
PRESSs ANGLE WiND WIND WIND WIND M T L] ANGLE  VELOC,
E KM KM RAD RAD M8 DEG M/S M/S M/S M/S L] seC L] DEL  CM/SLC
13 196, 705, 0.17 026 1011016 20246 47 —lod =18 le7 Q.03 Oe? Qa03 =1leB =flevn
1e 805. 1044 0ed? 0225 1010.95 20249 Sel —beb =149 18 0405 0.9 CeQ% =ile9 =lueswu
1% 815. 703, Qel? Q.24 101073 203,3 Seb %09 -2l le9 006 l1eQ Ga0b =1241 ~itsib
16 824 702, 0417 0e23 1010450 203,47 57 =542 ~243 4.0 0407 lel 0207 =1243 =}741¢

17 833. Tule Oel? De22 10104206 20441 640 =545 =244 241 0.08 led V0¥ =ldeb =i%eus
18 863, T00. Oels G20 1010.00 204,5 6.3 =57 246 262 009 la¢ Veil

19 852 699 Oele 0019 100974 2050 645 -39 =247 243 0ell le3 Gell
20 855, 697 Oels Gel9 1009.62 20541 646 =640 ~2¢8 2.4 0e11] le3 Vel
21 858, 696, Osl6 Cal18 1009+51 205.2 67 =6el =248 2ok Qel2 lak Vele

22 861, 694, Oel6 0418 1009439 205.3 6.8 “be2 =229 205 Qel3 le& Gers
23 365 6924 velb Del® 1009.27 20544 609 -6e2 =249 245 Oelé led Veis
24 868, 691, Oeld 0al7 1009415 205.5 T.0 =643 =340 25 Qels 1e5 Veld
871, 689, 0el5 Qal7 1009402 20546 7.l 6ok =340 246 015 1l Veib
885« 689, Oels 0415 1008,59 20647 T3 ~6e5 =3,3 207 0el5 lab Qelb
899 688, X983 Oelé 1008415 20840 Tels =beb =3eb 247 Qelb leo Oeib
913, 638, Oeld 0012 1007471 20945 Te5 =65 =3e7 2.8 0el7 let Uel?
928, 68 ', Celd 0410 1007428 2lla6 Take “6¢3 =39 2.8 Oel8 la7 Usl8
942 LR 0elS 0408 1006+86 21348 Te3 =540 “40Q 2.8 Geld 1e? Veld
684 Oelb 0s07 1006446 21647 740 56 %2 248 Cels 1e7 Qeld
Yoo 683, Jale 0.05 1006416 218.9 6.7 “5e2 CLTY 247 Vel9 1e7 Celb
975, 679 Gela Qa04 1005484 22145 6e3 4.7 =ba2 246 0,19 1.8 Oell
985. 676, Oulw 0e03 1005456 22449 9.9 ~4e2 —had 245 Gel8 le? Gal?
995 673 0s13 0402 1005631 22941 Sete “3e5 =asl 2eh Qelb 17 Oeld

-
OB > P W N
o
»
>
.

12 1004, 869, Oel3 0e01 1005408 23447 49 =248 -beQ 243 Oslb let Tels
i3 10len 6566 [P ¥ 0400 1004489 24242 bl “24¢0 =349 242 Ooléh leb Osll
le 1028 6630 Uel2 =0eCl 1006e71l 25649 3.9 =08 =3.8 243 Celéd 1e% Qeg?
15 10«is 661le Vel2 =043 1004459 27643 4al Ooke =440 248 015 1e% Qe05
16 1055. 658 Qell =0e04 1004254 29645 “e3 149 =348 346 Qei8 le? Geld
17 1068. 655, Oell <0406 1006455 31947 42 342 =247 3.9 0edl led Ge20

18 108l. 653, Qell =0408 1004463 34045 “el be5 ~leb “wel 027 240 Cal¥
19 1093 650 OelQ =0409 10064.78 35543 567 e =0et 5.7 Ve25 Ze3 Gelb
20 1106. 64%e Coll =0e31 10044¥5 3.0 &eb beb Ged beb Qett 248 velb

21 1117 648 0el0 =0412 1005416 847 745 Tebs lel Toke Oe55 2e9 UebT
22 1127, babe 0210 =0,)3 100%,35 12.9 8.3 Bal 148 8.2 0e61? 3ee Oeby
23 1138, 645 OelD =C,is 1005466 1642 9l 8.7 245 9.0 0.79 3¢5 VeBd
26 1149, Ghise 0el0 ~=0.16 1005493 1848 9.8 93 341 Yeb 092 3.8 V95
1 1160C. 643 0el0 <0417 1006427 2048 1340 9e? 3e7 10.2 1405 LY la07
2 1166, 8464 0sd0 =0,18 1006244 2349 10.6 99 3.7 10.3 lele LYY laly
3 1172. 650 0410 ~Col9 1006461 ATy 10.7 1060 348 1065 lec? Lot le30
4 11760. 653, Oell =0.,19 1006.78 2049 10.9 10e2 3.9 10e6 l.36 “rb lesd
5 1184 656 Oeki =0420 1006495 2049 11.0 103 3.9 iie8 letb> “e8 letd
& 119C. 660. Os«l2 =021 1007.13 20,9 1101 1043 349 108 1053 “e9 lebe
7 1196 663 Oel2 =0e21 1007.3] 2140 11l.2 10«6 440 10.9 le60 SeQ lebs
& 1213 667 Qei2 =0¢2% 1007.85 2241 Jie3 1045 “s2 1140 le66 Sel le70
9 1231, 671 Oel3 =0,26 1008439 2340 11.2 1043 “aw 10.9 1.72 5¢2 le75
10 1248, 6Ths O0s13 =0428 1008,93 2347 10,9 100 bt 1048 le76 93 la79
11 1265 678, Osle =030 1009.45 2644 1024 95 el 1041 1.78 5e3 lesl
12 1283, 682 Oels =032 1009494 2449 98 BeS b4al Ped lebh Sel leo?
13 1300, 686, 0el5 =0434 1010440 2544 9.l Bs2 3.9 BB lei? “ol let9
le 1312, 694 0+16 =035 1010.67 2540 845 Tel 3e6 843 1439 heb 1237
18 1324 102 Cel? =0.37 1010.92 2447 8.0 Te2 3e3 Te7 ledl bow la23
16 1339, 7104 Oel8 «0.38 101116 2445 Tab 6e7 3el 742 14006 el 1408
17 1347, T19. Uel® =0o40 1011.39 2442 649 6e2 248 606 093 38 Q94
18 1359, 727, 0e20 =Co&l 1011460 2440 &3 5.7 25 Bl 0,79 XY Uedl

19 1371, 735 Qe2l =0e%3 1011.79 23,7 5.7 52 243 5.6 0e&? 203 Qeby
20 1383, 1494 Oe22 =~0obte 1011497 23,0 542 “el 240 S50 0e56 3.0 Qas?

21 1395, 762, Ds24 =0abb 1012413 22,3 “eb “e3 1a7 44 Oe05 2e7 Dot
22 16D7,. 176, 0e26 =0Ces7 1012427 21,7 ol 3.8 le5 40 0e37 24k -3y
23 1419, 789, Oed? =0e48 1012440 21,0 347 EXLy le3 3.6 0,30 242 Oe3)
24 L1431, 803, Je29 =0e50 1012.52 2045 3.2 3.0 lel 3.1 0e23 le9 Cezé
1 lawld. 816, 0e3i ~=0,51 1012.63 19.9 248 246 0e9 2.7 Gei8 a7 Valy
2 1460s 839, 0+33 =0453 1012.76 1848 2e2 2e1 0e7? 242 Oel2 lea Vald
3 is78. 861e Oe36 =04%6 1012487 17.8 le7 la6 O0s5 1.7 0.C7? 1a1 VOB
& 1495, 884 Je39 =0458 101295 16.9 13 le2 043 le2 Qel& Oob Oel4
5 1512. 907 Uek2 =0.60 1013,02 16,0 0.9 Ce9 Os2 0s9 Q.02 Ced Ve02
65 1530 929 Oeth  =0462 1013,07 1541 1Y) Ot Oel Geb 90+01 Qek Ge01
7 1567, 952, Ce67 =0466 1013,10 16,3 Qeb Qe Oel Oet 0400 Oe3 Ge0u Tel da87

WAVE ZHIRGY IN THE BREAKER ZONE = 0.138E 10 JOULES

TOTAL LONG-SHORE CURRENT ENERGY = 04965E 39 JOULES
TOTAL POSITIVE LONG-SHORE CURRENT ENERGY = 02962E 09 JOULES

TOTAL NEGATIVE LONG-SHORE CURRENT ENERGY = 04263E 07 JOULES
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SHEBOYGANs wlSCONSIN

RUN BEGINS AT HOUR 7 ON JULY 13 1972

STORM = BAROMETRIC PRESSURE AT CENTER OF LOW = 99040 MILLIBARS
PRESSURE AT LARGEST ENCIRCLING 1SOBAR » 100840 MILLIBAKS
MAXIMUM PRESSURE INCLUDED IN STORM a2 101046 MILLIBARS

LENGTH OF MAJOR HALF AXIS = 175040 KILOMETERS
LENGTH OF MINOR HALF AXIS = 875.0 KILOMETERS
ORIENTATION OF MAJOR AXLS = 25,0 DEGREES FROM NORTH

LONGSHORE CURRENT EWUATION FROM FOX AND DAVISs 1972

SHORE = POSITION COORDINATES =~ X « 1892¢0 Y » 11120 KILOMETERS

SHORE LATITUDE w24 ONSHORE AZIMUTH & 270+ DEGREES

NEARSHORE SLOPEL & 04030 AVERAGE FETCH = 200¢ KILOMETERS

HOUR X ¥ x1 Y1 BARQ. wIND SURFe ONSH
PRESSe ANGLE wiND wWIND

M KM RAD RAD Mo DEG M/S Ms§

7 585, 1794¢ ~0e2% =0.49 1010.53 “9,2 0.l Osl
L] ©21le 1793¢ =042% =-0e48 1010.51 “9.3 Q0e2 Oed
9 657s 17924 ~=0e25 =Qua? 101049 4944 062 vl
10 6924 1791e =0425 <=044% 1010446 49,8 Qed Qe2
11 7284 1790s ~0e2% =040k 1010442 49,7 Qet 042
12 Téee 1789¢ =025 <0442 1010.37 49,8 Oeb 043
13 800+ 1788+ =025 =0u4l 1010432 5040 08 Oule
1a B42e 1788s <0425 =0.39 1010.24 5042 QeB Qes
15 884e 1788¢ =0425 =0.38 1010¢14 504 0.9 Ost

16 9264 1788+ =025 =0436 101002 $0.6 1e2 Q7
17 969%¢ 1788. =025 =0.35% 1009.87 $0.8 leb 0e9
18 1011« 17823, =025 =0433 1009.70 51,1 1.7 1s)

19 1053+ 1788s <025 =0.31 1009.49 Sle3 240 le3
20 1085« 1790e¢ =0e25 =0,30 1009.31 5145 203 les
21 1116. 1792 ~0.25 =0.29 100912 51.8 206 146
22 1llel¢ 1794 =0e25 =0,28 1008.91 5240 2e9 l.8
23 1179. 1796s =0s26 =0.27 1008467 5242 3.2 leg
24 1210s 1798+ ~0426 =0425 1008e%) 5249 345 241
1 12642+ 1800« =0426 =0,24 1008.12 52,7 3.9 243
2 1280+ 1806+ =0426 =0.23 1007476 53,1 @3 248
3 1318. 1813e =0e26 =0.21 1007.38 53.5 L7 248
4 133%. 1819, <0426 =0.20 1006496 53.8 S5ed 340
S 1393 18264 =0e27 =0,18 1006+51 54,3 S5eb 302
6 le3le 1832s =0427 =0,17 1006.04 54,7 640 3e6
T 1e69¢ 1839, -=0.27 ~0.16 1005453 55,1 bt XYY
& 1505. 1862+ =0428 ~0414 1005422 55,7 66 347
9 1561a 1885+ =0429 =0,13 1004s92 8642 6s8 3.8

10 15786+ 1907¢ =0+30 =0,12 1004462 56,8 740 3.p
11 1612. 1930 =0e31 =~0,410 1004433 5743 Tel 248
12 1648+ 19%3. =0e32 =0.09 1004,05 57.9 Te3 3.8
13 1684s 1976s ~Ve32 =0.07 1003.7¥ 5844 743 3e8

lée 1702¢ 1994s =0433 =0,07 10C3.70 58,8 743 3.8
15 1721e 2013+ =0e3« =0,06 100373 5941 Te3 3e7

16 1739+ 203le =0435 =0.,05 1003472 59,4 743 3e7
17 1757+ 2050e =0e35 =0,05 1003.71 39,7 Te2 3.6
18 1776« 2068s =036 =0,04 1003,71 ©0,0 7.2 3.6
19 179¢e 2087+ =0e37 =0,03 100372 b0 % 7.1 das
20 1B8lle 2108s =037 =0,03 1003.78 60,7 Tel dou
21 1829. 8 1003.84 61,¢ 740 EXT
22 1848, 1003.92 61,3 5.9 33
23 1863, 1003.99 6147 6.8 302
26 1881l 1004408 6240 6e7 el
1 1898, 1006.17 62,3 6t 3.0
2 192G 100%e22 6248 545 249
3 194le 2251e =~0.43 0401 1004.28 63,3 Gt 2e9
e 1963s 2272¢ =Dstdh 0.02 1006434 63,8 643 2e8
5 1985. 2293, <=0eb4 0603 100%s42 64,03 6a2 2e7
6 2006s 2213s -~0e45 0404 1004.50 64,9 6el 245
T 2028s 2324e  =0a.40 0405 1004460 65.6 640 Qa4

WAVE ENERGY IN THME BREAKER ZONE = 0s168t 09 JOULES
TOTAL LONG~SHORE CURRENT ENERGY = 04117€ Q9 JOULES
TOTAL POSITIVE LONG-SHORE CURRENT ENERGY = Q0,117E 09 JOULES

TOTAL NEGATIVE LUNG=SHORE CURRENT ENERGY « 040000 00 JOULES

ALSH
winD

M/S

Ol
Qel
0e2
Qe2
043
Oets
Qate
Qe6
vel
0.9
lel
1e3
leb
148
240
263
L5
248
3ol
£
3e8
CYY3
“web
“e9
5e3
5¢5
57
548
&0
64l
be3
63
603
b3
bed
62
bsd
Sel
64l
640
ba0
5e9
Se8
548
Se?
Se7
Se0
509

Seu

EFFECT,
wIND

M/S

Qel
0e2
0e2
043
O3
Oek
Q5
Oa7
Ce8
1.0
102
145
1e8
2+0
2e2
245
2e8
3.1
Ik
3.7
el
Lok
4.0
52
S5e5
S5e7
S5e8
5.9
60
6ol
be2
bel
6s1
bel
be0
60
5.9
S8
546
57
56
5eb
Hel
Se3
52
bSel
540
“e9
LB

WAVE
L]

"

0400
Ge 00
0es00
0400
000
0«00
0400
001
Q.01
002
0.03
CeO4
0405
0.07
0.08
0410
0«12
0.15
0417
Q20
Delh
0.28
0e32
0437
Geul
Osbo
050
[ 2321
Ve58
0s61
0-54
Oeb7
Cet9
070
072
0473
Oalb
Vel5
0e15
Qe?5
Oe7%
Qe15
Qo6
072
Js 70
0+68
Qeb5
Qs03
0460

wAvt
¥

SEC

el
Osl
Vel
Vel
Qed
Oed
Qe
Oeé
Qe®
Qed
Qeb
Osb
Ve¥
140
lel
le3
led
1eb
1e0
le8
1e9
Zel
262
24
245
2.7
2e8
o9
3.0
3el
3.2
3e2
343
3e3
3eb
3e4
et
3eb
349
345
3¢
3¢5
3.5
Ik
et
343
343
3e2
3ed

BREAKELR

n ANGLE

L] 1139
0e00 2249
0s00 23.0
Ve00 2341
0400 2343
000 2304
00 23¢0
000 2347
Ve 00 2349
Qe0} 2440
0.01 2401
Je02 2hed
003 243
0e04 FLTY]
Gelt 2405
QeQ7 2406
Ve09 rL{TRA
VelQ  24eb
Vels 4.9
Qeld 2540
Qel7 251
VeV 2543
Vedd P2 P
Ve2? 2545
03} 2%.7
Ua3d 258
Ue3s 2640
Qetel 2642
et 2643
Vet 2&ad
Vs 2607
Vebl 268
Veb3 2609
Va5 27.0
Uebe 276l
057 271
[*F-1] 2742
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Qed8 247¢3
Qo558 2744
Ved8 2744
Qabl 274
Oe58 2Tee
057 2745
0455 2146
Ved3 27.7
D5} 27.8
Ve 27.9
Velkt 2840
Qebs 28.1

(%14
VELOC,

CM/SEC

le74
2017
2e68
3e27
3e90
4o 15
50065
5480
Beld
ek
1132
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22479
PLTRAS
26e 8V
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bheBa
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s
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SHEBOYGANs wlSCONSIN

RUN BEGINS AT HOUR 7 ON JULY loy 1972

STORM

SHORE

HOUR

= BAROMETRIC PRESSURE AT CENTER OF LOW » 100240 MILLIBARS
PRESSURE AT LARGEST ENCIRCLING 1SOBAR = 101640 MILLIBARS
MAK[MUM PRESSURE [NCLUDED IN STURM #® 1018.,0 MILLIBARS

LENGTH OF MAJOR MALF AX1S s 105040 KILOMETERS
CENGTH OF MINOR HALF AX]5 » 7000 KILOMEVERS
ORIENTATION OF MAJOKR AXIS = 2040 DEGREES FROM NORTM
LONGSHORE CURRENT EUWUATION FROM FOXx AND DAVISs 1972

- POSITION COORDINATES = X » 189240 Y = 111240 KILOMETERS

SHORE LATITUDE = 424 CNSHORE AZIMyTH = 270, DEGREES
NEARSHORE SLOPE » 0.030 AVERAGE FETCH = 200, KILUMETERS

x Y Al Yl BARO. WIND SURFe ONBM ALSH
PRESSs ANGLE wind WIND WIND
KM KM RAD RAD MB DEG M/S M/S M/S
176 286 Ue52 =1+08 1018402 2948 Q.0 0e0 00
212, 296, 0.51 =1.06 1018,02 2945 0.0 0e0 Gel
267, 306 0e51 =1404 1018402 2943 Qe0 00 0s0
283, 315, 050 =1+02 1018.02 29.1 040 Q.0 00
319. 325, De49 =0.499 1018402 2940 040 0.0 0e0
354, 335, Oet® =0.97 1018.02 2848 0.0 0.0 00
390, A45, Q.48 =~049% 1018,02 2846 0e0 0.0 0.0
w25 3%6. Cebd <~0,93 1018402 2844 Q.0 G0 00
“59. 367, G477 =0.90 1018.02 2843 040 el Qev
“%u, 371, Oesb <~0oa88 1018.02 2841 C.0 00 ve0
829 388, Os45 =086 1018,.02 2749 0.0 00 0e0
563, 399, Oekd =0484 1018,02 2747 00 Q40 Ge0
598, w10 Os4bs  =0,82 1018.01 2745 Q.0 Qe0 0e0
630, wike 0,43 ~0,80 1C18,.01 2744 0.0 0.0 00
663, L1 Qe%2 =u478 1018.00 27.3 040 Ge0 0e0
695 ~524 Cebl =247% 1017.99 2741 Oel Gel Ueg
728. CLEN Ostel =0e73 1017.97 27.0 0.2 Qe Oev
760. “80. Qetsl  =0s71 1017.94 2649 042 Qe2 Oel
793, w94, Jed9 =0469 1017.91 2648 PR Ge3 Gel
Bele 518. 0e37 =0,66 1017.83 26,47 0o% 0.5 D2
888, 502 Oe36 =0463 1017.72 2645 0e8 Qe? Ce3
936, S6%. 0es36 =0s60 1017.55 2644 le2 1ad
984, 589 0e33 =057 1017433 2643 1.7 1e5
1031, 613 Q631 ~0454 1017,03 ibol 2a2 240
1079. 837, Ve300 =C,5] lUlbeté 2640 2.9 248 le3
1130, 689 0e26 ~Cstd 1016407 2760 3.8 des le?
1182 TeQs Oe23 =Cuéb 1015,37 i8e2 “el “e2 2e2
1233 792 0e20 =Co4] 1014053 295 S5e7 5.0 228
12864 [ 2T Oel7 ~0438 1013,58 31.0 6,7 5.7 XYY
1336, 895, Veld =Je35 1012451 3248 Teb LYY el
1387 P47, 0el0 =0+32 1011438 34,9 8,3 648 “s?
16421 989, 0407 =029 101048l 37.C 8.7 6549 Se2
le%6e¢ 1030, 0e05 =027 1009.8% 39.4 9.9 6.9 be?
1490+ 1072« Ledr <0425 1009211 42,3 Ved «.8 el
1526+ 1113 =0.J0 =0423 100Bsb) “%.0 943 6ot veo
1959 1i%%s =002 =Ce2i 1007.77 “840 Fe3 6e2 609
1593s 1196 =0sU5 =018 1007.20 510 92 Se8 Tel
1638 12334 =Q0e07 ~Qelb 1008444 3.8 3.0 a3 Ted
16804 1370s =0ulu =0413 1U05.79 56a4 840 “s? Ted
17234 1307, =0412 =0.10 100%.28 5940 842 “wed Tew
17660 1343s =0els =0407 100492 bled 1.7 3e6 b8
1810¢  1380es =Cal7?7 =0e0% 10C4e73 6541 1.2 3.0 a5
18534 14174 =Q4l9 =~0402 1004.7) 7049 beb 20l 6ed
18824 15042 =0e24 -L.(0 1005480 1743 86 let 6e%

1911¢  1590s =0430 vall 1007409 8341 LYY 07 bed
1940¢ 1677, =0.3% 0403 10084%2 8745 bec Qe2 bel
1970 1704e «0ebl 0,04 1010,00 90.9 5.8 =040 S5e8
1999: 1830 =0sbé 006 1011,07 9360 a3 =043 He2
2028, 1937. =0.%2 Qe0B 1012487 95,8 40 ~0sbe 4ot

2037 1988, =035 009 1313.06% ¥5.8 “o? =04 4e2
204%.  2029. =0e%8 0e09 1010437 959 3e8 =0l 3.8
20%4, 2090 =082 0+10 101%,03 9%.9 et ~0e3 et
2063, 214le =Uebd QelU 10185461 95.9 3.0 ~0e¢3 3.0
J0Tle 2192+ ~QebR Cell 1016412 95y 245 =-0e2 245
2080, 22643, ~u.7) Osll 1018.58 96,0 20l «0e2 2al
2099,  22684. ~Jds 76 0013 (0189 9746 ie? =0e2 1a7
211T. 23dee w0477 Osle 1017416 98.0 let =Jdel lete
2313%. 2379, ~U.80 Uels 1017439 9849 lel =Cel lal
2184s 24240 =G.8) Tale 1017.58 9.7 LY ] =0el 048

1724 2870, ~0e88 0el7 10G17472 100,% ) =Qel (1Y)

2191 231%. =009 0s18 1017483 101s¢ Qet =0.0 Oet

WAVE ENEROY N THt BREAKER ZONE o Qe224F 09 JOULES

TLTAL LONL=SMURE CURRENT EMEROY o 0,986 09 JOULES

TOTAL PNSTTIVE Luhu=bHORE CURRENT ENERGY = 0,195k 09 JOULES

Tu

“n NEGATIVE LORG=SMORE _UPHEN ENERGY + UeJUOF OO JCULES

EFFECT,
«IND

M/S

00
Q0
Q0
0.0
0.0
0.0
Qe0
CeQ
0.0
0ol
00
0e0
0eC
Oe0
Ce0
Qel
Oel
Oe2
Qo3
Ced
Oe8
1e2
1.6
Ze2
L8
347
“eb
55
bok
762
T8
el
bed
et
bew
bel
8el
7.8
Te3
b8
bed
Yol
Se.
fe?
Ned
“ed
3.8
3ol
249
207
PEL]
2e1
1.9
1.0
1e3
1el
0.8
Qeb
0%
0e3
Ol

WAVE

WAVE
T

SEC

Va0
Q0.0
Os0
0.0
0.0
Ge0
Q.0
Qe0
040
Qe
00
Q.0
Q40
0.0
0.0
Oe0
Qal
Ol
a2
043
[T
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HOUR

.
MONTEREYs CALIFUKN]IA
RUN BEUINS AT HMOUR & ON FEBUARY 13 1987
STORM ~ BARJMETRIC PRESSURE AT CENTER OF LOW ®» 998.0 MILLIBARS
PRESSURE AT LARGEST ENCIRCLING |SOBAR = 101240 MILLIBARS
MAK[MUM PRESSURE INCLLOED IN STORM ® 10l4e0 MILLIBARS
LENGTH OF MAJOR HALF AXIS = 70040 KILOMETERS
CENGTM OF MINCR MALF AX{S = 390,0 KILOMETERS
CRIENTATION OF MAJOR AXIS = 5040 DECREES FROM NORTH
LONIS-URE CURRENT EWUATIUN FROM LONGUET=HIGGINSs 1473
SHURE ~ POSITION COORDINATES ~ X = B817,0 Y = 81340 KILOMETERS
SHORE LATITUDE = 37, ONSHORE AZIMUTH = 120¢ DEGREES
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TIOES ~ SPRIAG TICt RANGUE 5 2,07 NEAR T]D: RANGE = De¥1 METERS
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SOUTH BEACHs ORLUON L
RUN BEGINS AT MOUR & ON DECEMBER 14» 1973
STORM = BAROMETRIC PRESSURE AT CENTER OF LOW = 99040 MILLIBARS

PRESSURL AT LARGEST ENCIRCLING ISOBAR & 1024+0 MILLIBARS
MAX[MUM PRESJURE INCLUDED IN STORM ® 10289 MILLIBARS

T Ty

LENGYM OF MAJOR HALF AXIS = 50040 KILOMETERS
LENGTR CF MINOR HALF AXIS = 5000 KILOWMETERS
QRIENTATION OF MAJOR AX]S = 0e0 OLOKEES FROM NORTM

LONGSHORE CURRENT EUUATION FROM FOX AND DAVISs 1972 E
SHORE = POSITION COORDINATES = X = 440040 Y = 152040 KILOMETERS

SHORE LATITUDE » 43, ONSHORE AZ]wuyThH = 90+ DEGREES .
NEARSNORE SLOPE » 04020 AVERAGE FETCH = 5000+ KILOMETERS 4
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CIRCULAR STURM TEST

RUN BEGINS AT HOUR 1 UN JULY 4y 177¢

STORM =~ BAROMETRIC PRESSURE AT CENTER OF LUW = 1000e0U MILLIBARS
PRESSURE AT LAROGEST ENCIRCCING [SOBAR s 10200 MILLIBARS
MAXIMUM PRESSUNE INCLUDED IN STORW s 10229 MILLIBARS
LENGTH OF MAJOR HALF AXLS = 300.0 KILUMETERS
LENGTH CF MINCGR MALF AXKIS = 2,343 K{LUMETERS
ORIENTATIUN GF MAJOR AXIS = Vel DLUREES FROM NORTH

STOPM VELOCITY = Qs KJLUMETEZS/HOUR

SHURE = P2SITIUN COURUINATES = X = 104040 Y = Va0 KILOMETERS
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NEARSHLrRE SLUPL = [,033 AVERAGE FETCH = 1000e KILUMETERS
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